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Chapter 1

INTRODUCTION

1.1 Background and Motivation

Two dimensional complex potential methods have been used for some time

for the prediction of the stress field near the tips of a crack in an elastic medium.

These methods have proven to be very accurate and generally lead to the solution of

two dimensional boundary value problems with Cauchy type singularities. Using these

methods, the study of the interaction between inclusions and cracks has been active for

many years. Applications of the results of theoretical analyses of cracks interacting

with inhomogeneities have had wide effect in the implementation of a broad range of

new and emerging material systems. The understanding gained by the solution of

appropriate elasticity problems provides researchers with insight into the mechanisms

of strengthening and toughening, as well as material damage, because of the presence

of material defects. The mechanisms of crack growth in composite materials and

ceramics, and that of strain hardening in metal alloys, are primary examples of the

direct application of the results of the study of crack inclusion interaction.
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crack near an inclusio,, provides the ability to quantitatively assess the energy absorbed

by crack path deflectin. This provides a basis for a fundamental elasticity model for

material toughening. Having such a method will provide researchers with a useful tool

to investigate the sources of toughening in materials, or to guide material scientists in

their efforts to improve the fracture toughness of present or new materials. It is just

such a method which is described in this work, with appropriate examples, test cases,

and verification of results ;" order to convince the reader that the proposed technique

is a viable one, and a useful one.

Methods to predict the path of a crack have. in the past, been based upon

the Finite Element Method using specialized crack tip elements which are intended to

capture the singularity at the crack tip. These predictions, by their nature, have been

computationally intensive. At each increment of crack growth, a new finite element

mesh must be generated. The crack has propagated into the mesh during this

increment of growth, and the crack tip element must stay at the crack tip. Therefore,

at each increment of crack growth, significant computation has to be undertaken just

to remesh the vicinity of the crack tip to model that increment of growth.

The proposed method for crack path prediction is based upon a Boundary

Integral approach, similar to a reasonably elementary Boundary Element solution,

where the boundary in question is the crack itself. This method has been used

successfully with two dimensional potential theory to calculate the stress field around

the tip of the crack, and therefore can be used to predict the direction of crack growth.
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Once the direction of crack growth is known, the crack can be grown by an increment

in the specified direction very simply by allowing the boundary (the crack) to grow by

that increment in that direction. The re-meshing of the boundary, then, is simply the

extension of a line by a known increment, in a predicted direction. If the crack is

parameterized as a smooth set of cubic interpolating functions commonly referred to

as a cubic spline, the extension can take on any orientation required to meet a specific

crack growth criterion. This parameterization, using cubic splines, and a solution to

account for the fact that the naturally growing crack is not straight, are developed in

detail in this work.

One of the major side benefits of this type of prediction model is,

therefore, that it is much less computationally intensive, and can be used as the basis

for performing sensitivity studies, or for a stochastic model of material toughening.

Of course, the major attraction of this method is that it uses an exact elasticity solution

which can be used as a basis for a fundamental mechanics model of material

toughening.

1.2 Survey of Past and Current Literature

The field of Linear Elastic Fracture Mechanics has had a long and

venerable tradition. Early work by Griffith [1], and Irwin [2] laid the fundamentals

for what has become an indispensable tool for the practicing Mechanical Engineer.

As the technique has become established and accepted, many elasticians have solved
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many problems of interest. Elasticity solutions have been mainly for two dimensional

regions, both for their simplicity, and for the ability to apply two dimensional stress

potentials to those regions. The potential methods of Muskhelishvili [3] have been

used with tremendous success, to solve some very complicated and difficult elasticity

problems in the field. Paris [4] and Erdogan 14,5], among others, have been

instrumental in the application of these methods to solve problems of significant

interest in the Engineering community. These problems have involved interfaces,

interactions, welded structures, open holes, and a multitude of stress problems where

the stresses become singular at some point of interest in the field in question. This

work deals with the solution of one of these problems in which the crack is interacting

with an elliptical inclusion, and is growing along a path that is affected by the

presence of that inclusion.

The problem of the interaction between a circular inclusion and a static

crack has been solved by Atkinson [6] for a radial crack, and by Erdogan, Gupta, and

Ratwani [71 for an arbitrarily oriented crack. Erdogan and Gupta [8] later solved the

problem in which the crack crosses the interface. These solutions are based on the

Green's Functions derived from one solution of a dislocation interacting with a circular

inclusion (Dundurs and Mura [9] and Dundurs and Sendeckyj 110]). Grief and Sanders

[1 used the same techniques to solve the problem of the effect of a stringer on a

cracked sheet of material. Their solution with respect to this work represents the other

extreme in ellipticity ratio from that done by Atkinson for the circular inclusion.
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Santare and Keer [12], presented the two-dimensional solution for the dislocation

outside a rigid ellipticil inclusion, using the complex potential methods of

Muskhelishvili [3]. Their Green's Function, when applied to a straight crack using the

methods described in this work matches Atkinson's [6] results for a circular inclusion,

and that of Grief and Sanders [ 11] for the line inclusion or stringer. Special attention

was paid in [12] to the rotation of the elliptical inclusion and the effect that has on the

stress field around the ellipse. Results were compared with a power series solution

found by Stagni and Lizzio [13], which did not take into account the rotation of the

ellipse. The comparison showed that the rotation has a significant effect on the stress

field in many instances. In another paper, Santare, Keer, and Lewis [14] solved a

related problem of an elliptical hole at a bone/implant interface, with symmetrical

cracks radiating from the edges of the ellipse, along the x-axis. Solutions to the

resulting singular integral equations were found using a numerical scheme proposed

by Gerasoulis [ 15]. The technique described in this work uses the potentials calculated

by Santare and Keer [121, and the numerical technique described by Gerasoulis [15]

to calculate the stress intensity factors for the advancing crack. These static results

were reported by Patton and Santare [16] in 1990.

Besides the interaction problem, the stress due to a non-straight crack path

is also important, and must be taken into account. The kinked crack problem was

attempted by several researchers in the early 1970's, with some success. Palinaswamy

and Knauss [17] besides providing a very good review on the subject, solved the
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problem of an infinitesimal branch or kink off the tip of a crack using a Fourier series

approximation. Their results are in agreement with an earlier solution by Bilby and

Cardew [18], and have been found by others to be correct. Other researchers

(Dudukalenko and Romalis [19], and Hussain, Pu, and Underwood [20]) came up with

analytical expressions for the complex potentials, but their results have been since

found to be inconsistent with the results published by other authors. Chatejee [21],

Gupta [22], and Kitigawa, Yukki, and Ohira [23], all independently solved the problem

of a finite extension to the crack, and their results agree with one another. K. K. Lo

[24] finally, in a paper in 1978 presented a unified approach to solving the kinked

crack problem that is most commonly regarded as correct and most commonly

referenced at present. His results match those of [17] and [18] for the infinitesimal

kink, and the results of [21], [22] and [23] for the finite length crack extension.

In the early 1970's, a group of Russian mathematicians solved the problem

of a crack with a curved extension by the use of a first order perturbation method.

Banichuk [251 found the first order perturbation solution and came up with complex

potentials suitable to a solution using Muskhelishvili's [3] method. Goldstein and

Salganik [26] then applied this set of potentials to the solution of a finite crack with

a curved extension. The same authors reported this work in the western literature [27]

in 1974. Since that time, Cotterell and Rice [28] used this technique to solve a similar

problem, coming up with a somewhat different way of describing the problem. They

explicitly calculate the stress intensity factors without the need to write integral
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equations, as was done by Goldstein and Salganik in [26]. Their results compare

favorably with that of Goldstein and Salganik [26]. Karihaloo et al. [29] included

second order terms in the same solution to refine the prediction, and came up with an

elaborate expression for the stress intensity factors. From these expressions, the

authors derive approximate expressions for these stress intensity factors in terms of an

infinite series. Their conclusions from this work were that the path of the propagating

crack depends not only on the in-plane normal stress as concluded by Cottrell and Rice

[28], but also on the derivatives of the stress intensity factors with respect to the

original crack length. They go on to conclude that a crack without an initial kink in

a non-homogeneous stress field can have a smooth curved path, as the Mode II stress

intensity factor will be changing continuously along the path of crack growth, under

the influence of the non-homogeneous stress field. That is exactly the situation that

is examined in this work, that of a crack growing through the inhomogeneous stress

field caused by the presence of a rigid elliptical inclusion.

Other solutions to the curved and/or kinked crack problem have been

proposed in the literature in recent years. Sumi, Nemat-Nasser, and Keer [301 resolved

the first order perturbation problem originally solved by Banichuk [25] and Goldstein

and Salganik [26], with the additional complexity of taking into account the boundaries

of the region. The original work by Banichuk [25], and Goldstein and Salganik [26]

had been done for a finite crack in an infinite domain, with no geometry effects of the

domain taken into account. Sumi, Nemat-Nasser, and Keer [311 went on to create a
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combined analytical and finite element solution to the crack path prediction problem.

Sumi [321 and Sumi, Ohashi, and Emura [331 have gone on to predict crack paths in

welded structures [32] and near open holes in cracked sheets [33]. The second of

these papers included an experimental investigation of cracks interacting with open

circular holes. Their predictions come reasonably close to their experimental results,

but more importantly for this work, it provides experimental results with which to

verify the predictions made with the present technique. Another very interesting

solution to the curved crack problem has been proposed by Sur and Altiero [34] in

which they do not formulate the problem in terms of the derivative of displacement

or Burger's vector, but rather in terms of the crack displacement itself. They claim

that their technique avoids the singularities at the tips and kinks of the crack, and that

their equations are not hypersingular, as other attempts to do this have been (see

loakimidis [351). They compare their results to those of Kitigawa et a]. [231 for the

kinked crack, with good agreement.

The criterion which is used to predict the direction in which a crack will

kink has also been a rather controversial problem. There are basically two different

schools of thought regarding the correct criterion to use for prediction of the path of

an advancing crack, stress-based methods and energy-based methods. Erdogan and Sih

[36] proposed a criterion which has come to be called the "Maximum Normal Stress

Criterion," in which they state that a naturally growing crack in an isotropic material

will grow in the direction in which the stress normal to the crack propagation direction
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is greatest. This criterion implies that the stress parallel to that direction would be a

minimum, or that the shear stress in that direction would vanish, as the crack would

propagate in a direction normal to the maximum principal tensile stress. One can

easily verify this by rotating a plane stress field into its principal directions. In the

principal directions, there is no shear stress. The authors substantiate their claim with

experimental data which seems to validate their analytical results. Other authors have

applied their criterion to differing crack models. McClintock [371 and Cotterell [38]

noticed a discrepancy when the elliptical edge crack model was used rather than the

slit model used by Erdogan and Sih [36]. Other authors (Williams and Ewing [39],

Finnie and Saith [40], and Ewing and Williams [41]) discussed the implication of

including more terms in the near tip approximation using this criterion. Sih [42]

proposed a new criterion which is supposed to be a combination of a stress method

and an energy method, which he called the Strain Energy Density Criterion, or S-

criterion. This criterion has come under some criticism, as it does not have as much

fundamental basis as the energy and stress methods.

The name, Maximum Energy Release Rate Criterion, was initially proposed

by C. H. Wu [43], in 1976 when he reviewed all of these works, and proposed a

criterion for fracture which is consistent with Griffith's [1] energy release concept.

This was the first real treatise on energy based methods that was published. This

criterion was mentioned by Erdogan and Sih [36], and a solution was given by

Palinaswamy and Knauss [17], even though none of these authors explicitly call it the
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Maximum Energy Release Rate Criterion. In his work, Wu solved the problem of

describing the energy released by an infinitesimal kink at the end of a straight crack

with the use of the potential methods of Muskhelishvili [3], and then applied his

criterion that the energy released by this infinitesimal propagation should be a

maximum with respect to the direction at which the kink propagates. He compares his

results to Erdogan and Sih [36], Sih [42], and the Fourier series solution found in

Palaniswamy and Knauss [17]. The only discrepancies noted are for a crack loaded

in pure shear, where the angle of the kink is on the order of 70 to 80 degrees. In the

literature, there was much controversy about this particular problem, but in the work

described in this document, the kink angles are very small, as the crack is growing in

a stress field which is a tensile field normal to the original crack. The fact that these

two major criteria produce identical results for small kink angles in a stress field which

does not produce significant Mode II loading, leads to the conclusion that either is

acceptable for the work described in the following pages, and the major reason to

choose one over another is ease of implementation.

1.3 Dissertation Outline

The remainder of this chapter describes the content and organization of this

dissertation, in enough detail that the reader should be able to understand the

techniques presented, and follow the methodology presented.

Chapter 2 presents a brief summary of the fundamentals of the two
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dimensional potential methods used in deriving the crack solution. The methods of

Muskhelishvili [3] are presented along with the methods by which the singular integral

equations used to calculate stress intensity factors are derived for crack solutions. Also

included is a short description of the methods of solution that have been employed in

the past by practitioners of Linear Elastic Fracture Mechanics. At the end of chapter

2, a brief discussion of toughening mechanisms in materials is presented in order to

motivate the discussion of solutions for cracks near inhomogeneities.

Chapter 3 presents the solution to the point dislocation interacting with a

rigid elliptical inclusion. The formulation of the problem, using complex potential

methods, is presented, and the potentials that were calculated by Santare and Keer [12]

are presented. The chapter closes with a summary of solution technique used to model

a straight crack, using the point dislocation potentials. Results of that analysis, which

are original, and a comparison with previous work are presented. This chapter

concludes the review of work done by others, with the discussion of the solution for

a dislocation interacting with an elliptical inclusion. The solution of the straight crack

problem, and all subsequent work that is presented in chapters 4, 5, and 6 is original

work.

The material presented in chapter 4 is intended as background for the

technique used to predict the path of the crack. The most fundamentally difficult part

of this is the ability to model a curvilinear crack in a complex stress field (created both

by the applied load and by the inclusion itself). The chapter begins with a discussion
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of crack kinking and curvature solutions, and their applicability and suitability to the

chosen method of solution. Historically, these solutions have been used only to

correctly calculate the stress intensity factors for a non-straight crack. They have been

intended to model the reaction of a crack to a change in the direction of the applied

load. There has been little done to extend these solutions to a path prediction model,

or to include them in a model of interaction with inhomogeneities. The chapter

continues with the description of a perturbation solution which was performed in the

early 1970's by a group of Russian mathematicians which is particularly applicable to

the problem at hand. As a result of the adoption of that solution, the crack must be

parameterized in such a fashion as to yield the local spatial first and second derivatives

along the crack. A cubic spline parameterization is particularly suitable for this

parameterization, and that is also described. The chapter closes with a description of

the crack extension algorithm, and a comparison of the solution with known kinked

crack solutions.

Chapter 5 describes the method used to predict the crack path near the

inclusion. It begins with a historical review of crack propagation laws, and a rationale

for the choice of the Maximum Normal Stress as the criterion used to predict the local

direction of incremental crack growth. The algorithm used to predict the local

direction is described, and a verification of the prediction is described. The chapter

continues with parametric studies of path deflection as a function of ellipticity ratio of

the ellipse, and on the initial location and orientation of the crack. It concludes with
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an estimate of energy absorbed by crack path deflection for several crack paths of

interest.

The last chapter of this dissertation reviews significant results and presents

conclusions obtained from the study of crack path deflection, along with a few ideas

for future work that should come as a result of this study.

13



Chapter 2

FUNDAMENTALS

2.1 Two Dimensional Complex Potential Methods

It can be shown that the stress-strain relations for two dimensional plane

problems can be written in indicial notation as follows (Muskhelishvili [31):

2111 =- o - p..)(2.1)

where Muskheli w1ili's constant, x = (3-v)/(1+v) ior plane stress, and K = 3-4v for

plane strain, v is the Poisson's ratio of the material, the strain is defined by F,, the

stress by (YO, p is the shear modulus of the material, and the kronecker delta (6) has

its usual indicial definition. Following the complex potential methods of

Muskhelishvili, it is assumed that the complex variable z defines x and y coordinates

as in z = x + iy, where i is the imaginary number. Furthermore, displacements and

forces can take on complex values as D = u + iv whert, u is displacement is the x-

direction -i is displacement in the y-direction, and the forces as F = F" + iFY, where

the subscripts refer to forces in those directions. From these quantities, the stresses
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and displacements in the region can be written as a function of two holomorphic

potential functions 0 and V as follows:

G,,+ aY=2[-40(z) !,0(z)] (2.2)
dz dz

a,-a +2ia,=2[z--0(z)+-idr(z)] (2.3)
.... Z dz2  dz

2 i(u +iv) =m (z)-z d4(Z) - ( W (2.4)

dz

In the stress analysis of a two dimensional region, therefore, what is

required is the calculation of these two potential functions. In a great number of cases,

these two potentials can be calculated by evaluating two Cauchy integrals, as given by

Muskhelishvili. In the case of a single dislocation in an infinite homogeneous elastic

medium, these integrals give the following potentials:

41d(z)=ylog(z -z0) (2.5)

*,a(z)=Y1og(z-zo)-Y z° (2.6)
z-zo

where the dislocation is included in the form y = p(b,+iby)/i~r(Kc+l), z is some point

in the complex plane and z. is the position of the dislocation. The dislocation, in the

form described above (b, and by), is called the Burger's vector, which is related to the

derivative of the displacement at the point of the dislocation. Obviously, the stresses
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become singular as one approaches the dislocation, as would be expected. Therefore,

to study the stress field near a dislocation, or along the line of dislocations commonly

used to model a crack, one must deal with the singularity in stress. In linear elastic

fracture mechanics, the stresses along the crack are assessed by modelling the

displacement of the two faces of the crack as a line of dislocations or crack opening

displacements which is unknown. The stresses which are related to the strains, or

derivatives of displacement, through the stress-strain relations (equation 2.1), therefore,

can be written as a set of singular integral equations where the unknown distribution

of dislocations is inside the integrals. The integrals are taken along the crack, and the

value of the integrands are singular at the end points, namely the tips of the crack.

2.2 Solution Methods

Several techniques have been used in the past to solve the singular integral

equations that result from the stress analysis of a crack, but the most commonly used

is an approximation of the singular part of the integral with a suitable polynomial

(Chebychev or LaGrange are common choices), and a direct numerical evaluation of

the non-singular part of the integral. The technique developed by Gerasoulis [15]

which is noted in the discussion of pertinent literature in the introduction is the one

employed in this work.

Since the stress analysis is linear, the principle of superposition applies.

Therefore, if the problem in question can be modeled as a superposition of several
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stresses upon one another, the stresses due to each of them can be calculated, and then

added up. In the analysis of cracks interacting with inclusions, much use of the

principle of superposition is made. In practical use, the methods to evaluate the

singular integ-ral equations have a singular part which represents the crack tip

singularity, and a non-singular part which represents the superposition of all of the

other stresses which act on the crack at some distance from the crack tips. Therefore,

to analyze the effect of an inclusion interacting with a crack, one needs to calculate

potentials 0 and xV for the interaction between a dislocation and an inclusion. Using

these potentials, the stresses are calculated, superposed and summed along the crack

length, resulting in an integral equation valid along the length of the crack. Therefore,

the integrals typically take the following form for a finite crack:

Cj b(z) o+C2fK(zob() = F(z) (2.7)
Zi Z-Z' Zl

where the two constants (C1 and C2) are based upon material and geometric properties,

the integrals are taken between the two crack tips z, and z2, and the dislocation

density, b(z0), is an unknown function along the crack which is evaluated at the points

z0. This form explicitly separates the singular part of the integral equation as the first

integral, and the non-singular part, or kernel (K(z,z )), as the second integral. The

forcing function, or the load applied to the crack, is given as F(z) on the right hand

side of the integral equation.
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2.3 Toughening Mechanisms in Materials

One of the most common methods of strengthening and toughening

engineering materials has been the incorporation of inhomogeneities into the base

structure of the material. Composite materials are probably the most well known

example of the purposeful use of this method for strengthening. In an organic

composite material, the relatively weak and brittle organic matrix material is both

strengthened and toughened by the incorporation of fiber reinforcement. In a typical

discontinuously reinforced metal matrix composite material, the hard, tough reinforcing

phase is interspersed within the metallic grain structure. The same is true of ceramic

matrix composites, where a harder ceramic reinforcement is dispersed into the softer

ceramic matrix surrounding it. A more mundane example of this toughening is that

of high strength steels and aircraft grade aluminum alloys. In both of these materials,

hard intermetallic compounds are precipitated out into the boundaries around the grains

of the metal, and strength is increased. In many cases, if the bonding between the

matrix material and the reinforcement is good, and if the reinforcement takes on

certain geometric and physical properties, the toughness of the material is increased.

One of the more compelling theories that has been proposed to explain this

phenomenon is that the deflection of the path of a crack through the material absorbs

a significant amount of energy, thereby toughening the material. Rubinstein [45]

discusses this mechanism at length, giving solutions to the problem of calculating

toughness increase due to crack path and crack shielding effects. This work is used
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in a later section of this document to estimate the energy absorbed by cracks which

are effected by elliptical inclusions. It would seem that, from this work and that of

Rubinstein, a fundamental model of this crack path deflection that would allow the

estimation of energy absorbed by crack path deflection would be useful in

investigations into material toughening. It is precisely this mechanism that provided

the motivation for the work that is described in this document.
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Chapter 3

ELLIPTICAL INHOMOGENEITY

3.1 Problem Formulation

The problem of calculating the interaction between a dislocation and an

elliptical inhomogeneity can be solved by determining suitable potential functions 4

and xV such that the classical methods described in this work can be used. These

potential functions can be calculated by solving an appropriate boundary value problem

that can be cast as two integrals in the complex plane. This problem was solved by

Santare and Keer [12], and the salient points are described in the following.

The geometry of the problem is simplified by uing a conformal mapping

of the region outside an ellipse onto the region outside the unit circle, as shown in

Figure (3.1). The function that does this mapping can be written as,

Z=G (= + M(3.1)

where
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R- a +b  (3.2)
2

and the parameter which can be thought of as the ellipticity of the ellipse is given by

a-b
m a-b (3.3)

a+b

where a and b are the semi-axes of the ellipse shown in Figure (3.2). This figure

ZO CO

b

Z-Plane C-Plane

Figure 3.1. Mapping function for the dislocation-inclusion interaction problem.

displays the geometry of the problem of a crack interacting with an elliptical inclusion.

In Figure (3.2), the two crack tips are shown as Z, and Z2, the distance from the ellipse

to the close crack tip is defined as d, the angle that the crack makes with respect to

the x-axis is 0, and the angle that the close tip of the crack makes with respect to the

major axis of the inclusion is cc. The parameter that defines ellipticity, m, takes on a

value of zero for a circle, and a value of one for a line along the x-axis. A value of

m of -I describes a line along the y-axis.
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aa

Figure 3.2. Geometry of crack-inclusion interaction problem.

The solution for a dislocation interacting with a rigid elliptical inclusion

is used to formulate the Green's functions for the crack problem. The potentials were

calculated by Santare and Keer [12], and are restated here for completeness. They

include the dislocation in the form, described previously, of 'Y = p (b, + ib,)/iir (K +

1), the mapped coordinates and r, which are the transformed z and z., and the

rotation of the ellipse Fo.

-( = -- og[R(C-Co +mIC-m/Co)]

+log[.( - I/C)l - ylog[ -  (3.4)

__Y (1/ O°-m/C°) (1/Z°-C°) +21VieoR_. m

7 (I/co-(dm) (1/o-C) K
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*(C) = ylog[R(C-Co+m/ C-m/Co)] - "y C +mIC
C-Co+mIC-MlCo

-- (C-IlId - (C -M/CO)+ xylog[ -  I ylog[ C ]

(m/ o- 1(--o) (mICo-C-/rm) + 21ie0
R-Mn (m/ o- 0) (mICO- ) C (3.5)

C 1+m(C2 I ,y rn mo/C0

- -y
C2- K C(C-IC0) C(lIC-ml-Co)

+ -- CO P m

KM C1 - rnKCC-oo/m) (C-1IQ)2

where

eo = Re i[---+y--+ -

Co CO CO

m (mCo-lI) (mI-c-Cm) (3.6)-y- - ,m (3.6)
KCo (nCo-C0)

x (1/Co- Cm) K

The first term in 0 (equation 3.4) and the first two terms in xV (equation

3.5) represent the potentials for dislocation in an unbounded medium, and are the

restatement of equations 2.5 and 2.6 in the mapped plane. These terms, when applied

to equations 2.2 and 2.3 to calculate the stresses, become singular, and constitute the

first integral in equation 2.7. The remainder of the terms in both potentials account
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for the interaction between the ellipse and the dislocation. These terms, when used in

equations 2.2 and 2.3, constitute the nonsingular stresses due to the interaction between

the dislocation and the inclusion. Note also that the rotation of the ellipse is taken into

account through these nonsingular terms and is called Fo. The last term in the

expression for VI (the bracketed terms) contains the first derivative of the interaction

portion of the first potential 0. This is a natural consequence of the method of

Muskhelishvili [3].
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3.2 Solution Method for a Straight Crack

Summing these stresses along the crack length (Figure (3.2)) and setting

them equal to the stresses due to the external load, two singular integral equations

result. The solution of these equations will give the unknown distribution of

dislocations along the crack, from which the stress intensity factors at the crack tips

can be directly calculated. If the stresses are resolved into components normal to the

crack (Mode I), and along the crack (Mode II), the two equations can be stated as

follows:

Z2 b.(ZO) Z 37f b( dzO + f U,(z,z)b,(zo)dzo = f,(z) (3.7)

f dzo, + f a ,(zzO,)b,(4Gddzo = .f/(z)

ZiZ-Zo ZI

where the n and t subscripts refer to the normal and tangential components with

respect to the crack, f. and f, are the stresses due to the external load, and the non-

singular parts of the potentials are denoted as a, and a,. The first term in each of

these equations represents the Cauchy singular portion of the stresses (as noted above),

and the second term contains the nonsingular parts. The normal and tangential

cartesian stress components can be determined using a standard trigonometric

transformation. The solution to this problem is non-unique, however, until one more
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condition is met, that of crack closure. Simply stated, the crack must close, or the

crack opening displacements must be identically zero at the two endpoints or crack

tips. This condition can be stated in the formulation of this problem as follows:

Z2

fbz,)dZ 0 (3.9)
z1

If this condition is met, there will be a single, unique solution to the unknown

distribution of dislocations.

Furthermore, if equations 3.7 and 3.8 are rewritten in terms of the polar

form of a vector from z to z0 as follows:

= z;e* = pei (3.10)

where the singularity is explicitly shown as p goes to zero, the stress due to the

Cauchy singular portion of the above integral equation can be determined, in terms of

the angle 0 (the angle of the crack, as shown in figure 3.2), as follows:

, = I[b(cosO + cos3O) -p (3.11)

b,(3sinO + sin3O)]

= 1[b(3cosO - cosO) -
p (3.12)

b.(sin3o - sino)]
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I
GY = [by(sin3 - sine) +p (3.13)

bx(cos3 + cose)]

This permits calculation of the x and y components of the dislocation vector (Burger's

vector) for a straight crack in any orientation.

Once these integral equations have been written, a numerical treatment

must be used to solve for the unknown distributions of dislocations in the x and y

directions, b. and by. There are several treatments to this prob.n that have been

published in the literature, all of which use a polynomial appioximation of the

unknown function. The numerical technique used in this vork was proposed by

Gerasoulis [15] in 1980. This technique uses a piecewise quadratic polynomial

representation of the singular and non-singular parts of the integral equation, and

reduces the integrals to a discretized set of algebraic equations well suited to a matrix

type solution. However, in order to use the technique, first some assumptions about

the nature of the singularities at the tips of the crack must be made. Following the

method of fracture mechanics, it can be shown that the stresses at the crack tips

become singular as 1/p~t . The dislocation density will therefore also exhibit this

square root singularity at both ends, and can be written in the following form:

b(s) = g(s) (3.14)
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where s = 2(z - z,)/(z2 - z,) - 1. The functions g(s) are therefore continuous and

bounded along the interval s c [-1,11. Also, in general, the solution to the singular

part of the integral equation is not unique, and an additional condition is required. In

the present work, that condition is that the crack must close at the crack tips.

Mathematically, this means that the value of the integral along the interval from -1 to

1 of the unknown distribution of dislocations (g(s)) must be zero.

For a given crack discretizatio, parameter n, the numerical technique

provides 2n+l integration points and 2n collocation points, as follows:

2y+ 1

S[w,() + v =AQ) (3.15)

j -1,2, 2N

where the w's are the weighting functions that aye applied to the singular part of the

integral, the v's are the coefficients of the non-singular kernel (K), the i's are thc

integration points, and the j's are the collocation points. The weight functions w,(s)

and vi are calculated by using the LaGrange interpolation formula for three points to

approximate the unknown bounded function iH the case of the w's, or the unknown

function multiplied by the kernel (K(s,t)) in the case of the v's, with the singularity

explicitly removed, and integrating (summing) along the interval. The final

expressions for the coefficients that make up the weight functions are rather

complicated, and are found in the paper by Gerasoulis, and therefore will not be

restated here.
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The calculation of the unknown g(s), then, amounts to the creation of a

matrix of the weighting functions, w(s), added to the non-singular kernel multiplied

by the weighting functions v, in the form [A]{x} = (b}. As stated previously, the

matrix [A] is not a square matrix, or there are 2n+l equations with 2n+2 unknowns

until the condition of crack closure is added by multiplying the non-singular weight

function by the cosine or sine of the local angle and placing that value in the last row

of the matrix, as follows:

A(2N+2, J)=V(Q) C,, (3.16)

where C. denotes the sine or cosine of the local angle of the crack. The solution then

requires inversion of the matrix [A], and multiplying by (b), the forcing function, to

determine the unknown {x} or in this case, {g(t)}. Gerasoulis states that the method

works equally well for unequal meshes, but in this work, the spacing was kept equal

for simplicity in coding of the algorithm. A value of n above 6 was found to be

unnecessary for crack lengths on the order of the size of the inclusion.

3.3 Results and Comparison to Previous Work

Figures (3.3) through (3.9) are shown to compare and contrast the results

of the solution of a straight crack interacting with an elliptical inhomogeneity with

those previously published. These results are original, and are reported in Patton and

Santare [161. In all of these figures, the results are presented in terms of the
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normalized Mode I stress intensity factor. This stress intensity factor is normalized as

follows:

K,normalized k, - (3.17)

where the stress, a, is the applied load on the infinite medium, the crack length is L,

and the Mode I stress intensity factor is in the numerator. The normalization in this

equation means that without the presence of an inclusion, the normalized stress

intensity factor will have a value of one, or the stress intensity factor will be the same

as that for a crack in an infinite medium without an inclusion.

Since the greatest interest in this work is with the crack tip closest to the

inclusion, all results reported are for the stress intensity factor for the tip closest to the

inclusion. Also, to make comparisons between different results meaningful, some of

the specific geometry parameters are held fixed for the reported results. Specifically,

the value of R (the size of the inclusion) was held fixed at unity, as was the length of

the crack. For results reported for a rigid inclusion, Muskhelishvili's constant, w, is

held at a value of 1.67. Also, the shear modulus, p, does not require formal

specification as a result of the normalization procedure. Therefore, as m (the ellipticity

ratio) is varied, the values of a and b from Figure 3.2 can be calculated using

equations 3.2 and 3.3 for all of the results presented in this work. It was discovered

during the course of this investigation that a crack length of approximately the size of

the inclusion provided results both to compare with previous results, and also to make
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the effect of the other crack tip on the results nearly negligible. By this it is meant

that the results for a unit length crack interacting with a unit circular inclusion gave

results that varied very little from a crack of length 10 or 100, when normalized

according to equation 3.17, interacting with the same inclusion. Since the intention

is finally to create a path prediction model, with the crack tip clos st to the inclusion

exhibiting growth, this result is meaningful in that the effect of the far crack tip is

minimized in that prediction model.

The problem of a circular inclusion was treated by Atkinson [6] and by

Erdogan and Gupta [8], and that for the elastic line inclusion by Grief and Sanders

[11]. These are, of course, both extremes of the solution for the elliptical inclusion,

and provide a good comparison. In the paper by Grief and Sanders, the integral

equation is formulated somewhat differently, in that only the interaction terms are

taken into account. The present solution takes into account not only the interaction

terms, but also the stress singularities at the tips of the crack. The results of that paper

therefore have to be added onto the stress due to the singularities to provide a

comparison. That has been done, and the results for a rigid inclusion with a range of

ellipticities (m) are shown in Figure (3.3). In this figure, the crack is oriented

horizontally, aligned along the real axis (x-axis), and is at varying distances (d) from

the edge of the inclusion. The curve in the figure labeled as m=0 (a circular inclusion)

reproduces the results of Atkinson. A comparison of the two sets of results is given

in Table 3.1. In the work by Grief and Sanders, rather than presenting stress intensity
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Figure 3.3. Stress intensity factor versus distance from ellipse for a radially oriented
crack and varying ellipticity ratios (load normal to crack, R=I., L/R=l., K=1.67).

factors, they present a ratio of the stress if the interaction between the crack and the

line inclusion (stringer) is taken into account versus the stress if that interaction is not

present. They also present results for an elastic stringer, rather than a rigid one.

Therefore, if in the present analysis, such a ratio is calculated, it would represent the

limit as their analysis approached a rigid stringer. Those results are shown in Table

3.2, where their flexibility parameter, A is varied from a value of 10 (flexible stringer)

to 0.1 (stiff stringer), and compared to the rigid or limiting case presented in this work

in which it would have the value zero. These results are reasonable and follow the
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Table 3.1. Comparison of present results with those of Atkinson

Distance From Inclusion JAtkinson Present Solution

.1 .43 .4276

.2 .58 .5867

.3 .68 .6857

.4 .76 .7527

.5 .80 .8002

.6 .84 .8353

.7 .86 .8619

.8 .88 .8825

.9 .90 .8988

1.0 .91 .9119

trend reported in the Grief and Sanders paper.

Figure (3.3) clearly shows the effect on the stress intensity factor due to

the presence of the inclusion, and the effect of both the shape and orientation of the

inclusion. For those inclusions that are long and slender, aligned normal to the crack

(negative m's), the effect called crack shielding is predominant. This phenomenon, the

lessening of the Mode I stress intensity factor due to the presence of an inclusion,

called crack shielding, is exactly the phenomenon postulated to be the toughening

mechanism attributed to inclusions. It is also interesting to note that there is slight

anti-shielding, or a slight increase on K, when a line inclusion is oriented in the same
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Table 3.2. Comparison of present results with those of Grief and Sanders

Distance From Grief and Grief and Present Work
Inclusion Sanders (A = Sanders (A (A = 0)

10.) .1)

.05 .92 .67 .5279

.1 .96 .78 .6619

.15 .975 .85 .7517

.2 .98 .88 .8159

.25 .985 .92 .8627

.3 .99 .94 .8974

.35 .99 .955 .9232

4. .99 .96 .9428

direction as the crack. In a path prediction, one would expect that the rounder

inclusions or inclusions oriented normal to the path of the crack would deflect the

crack, whereas a line inclusion, or a long, thin inclusion oriented in the same direction

as the crack would tend to attract the crack, because of this shielding or anti-shielding

effect.

Figure (3.4) shows similar results to Figure (3.3) except that in this figure,

the inclusion is an open hole. Muskhelishvili [31 noted, in his work, that if the

material parameter, Kc, was set to a value of -1, which is physically unrealistic, the

solution to the rigid inclusion problem becomes that for an open hole. In Figure (3.4),
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Figure 3.4. Stress intensity factor versus distance from open hole for a radial crack
and varying ellipticity ratios (load normal to crack, R=I., L/R=I., x=-1.)

then, the parameter, ic, is set to a value of -1, and the results are for open holes with

varying ellipticity ratios. Note that the character of this figure is opposite that of the

previous figure, in which the inclusion is rigid, in that as the close crack tip

approaches the open hole, the stress intensity factor increases. If, therefore, an

inclusion would be expected to deflect a crack because of shielding, a hole would be

expected to attract a crack because of anti-shielding. This is physically reasonable, and

has been seen in practice.

Figures (3.5) through (3.9) show interesting results of the solution for
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differing cracks at differing orientations interacting with differing inclusions. Figure

(3.5) shows results for a radial crack (0 = (x in Figure 3.2) at several different

orientations interacting with an inclusion with varying ellipticity ratios. The distance

from crack to inclusion is held constant in this figure at a value of 0.1 R where R =

(a+b)/2, and again, R and the crack length are held at a value of one. For a circular

inclusion, this distance, d, is 0.1 times the radius of the circle. Note that for a

relatively flat ellipse, or for a value of m greater than 0.5, the location of the close tip

of the crack varies rapidly with small changes in the orientation angle ox. This effect

is shown schematically on the figure. In effect, once the crack is rotated slightly from

the x-axis, it is shielded by the flat side of the ellipse. This phenomenon is most

striking at the higher ellipticity ratios (m=.9).

Figure (3.6) presents an interesting result of the shielding effect of a flat

ellipse. In this figure, the ellipticity ratio is held constant at a value of 0.9, and the

distance of the close tip of the crack from the inclusion is varied for three different

angles. The angles shown are very small, not exceeding 4 degrees, showing that very

small changes in orientation of the crack can have very drastic changes in the stress

field at the close tip of the crack. There is a 30 percent reduction in the stress

intensity factor for an angular rotation of only 2 degrees, if the crack is shielded by

the ellipse. As the close tip of the crack is moved away from the inclusion, it becomes

unshielded, and asymptotically approaches the stress intensity factor for a crack at an

orientation angle of 0 degrees with respect to the inclusion (see figure 3.2). This
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Figure 3.5. Stress intensity factor versus alpha for a radial crack and various
ellipticical inclusions (load normal to crack, R=1., L/R=I., K=1.67).

shielding is an expected result, and should provide the impetus for deflection of the

path of a naturally growing crack. That is, of course, the final result of this research,

and it will be discussed in that section of this document.

In Figure (3.7), a different approach was taken with regard to the location

of the tip of the crack which is closest to the inclusion. In this figure, the distance

held fixed is that from the close tip of the crack to the origin rather than to the

elliptical inclusion. Again, the crack is oriented radially with respect to the origin, and

normalized stress intensity factors are plotted for three different ellipticity ratios versus
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Figure 3.6. Stress intensity factor versus distance from rigid ellipse for ellipticity
ratio of 0.9 and small alpha (load normal to crack, R=1., L/R=1., i=1.(7).

the angle that the crack makes with the x-axis. The distance from the close tip of the

crack to the origin is held at a value of 2.1R, so that the elliptical inclusion with an

m of 1.0 (line inclusion), with the crack at an angle of 0 degrees will give a distance

from the crack to the inclusion of 0.1R. Note that there is still shielding of the crack,

but since the close tip of the crack is at a much greater distance from the ellipse than

in the previous figures, the shielding effect is much less pronounced.

Figure (3.8) is the only one in which the crack is not oriented radially with

respect to the origin. In this figure the crack is either horizontal (Theta = 0.) or
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Figure 3.7. Stress intensity factor versus alpha for varying ellipticical inclusions
with crack constant distance from origin (load normal to crack, R=I., L/R=1.,
ic=1.67).

vertical (Theta = 90.), and the normalized stress intensity factor is plotted against the

x-coordinate of the close tip of the crack. The y-coordinate of the close tip is held at

a value of 0.5R, and the ellipse has an ellipticity ratio of 0.8. A similar result was

presented for the circular inclusion by Erdogan, Gupta, and Ratwani [7] for a circular

inclusion, and if the ellipticity ratio is held at a value of 0.0, the present technique

matches their results. Note in this figure that the crack becomes unshielded at an x-

coordinate of approximately 1.8R, as one would expect, as that location is the right

edge of the elliptical inclusion.
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The last figure of the series, Figure (3.9) shows the effect of varying the

direction of the applied load with respect to the crack. In this figure, the distance

between the inclusion and the crack was held fixed at d=.1R. The orientation and

elevation of the crack was also held fixed, at 0--0, and the crack aligned along the x-

axis. The direction of the applied load on the crack was varied from a value of 0

degrees to 90 degrees, for two ellipticity ratios, m=.4 and .7, and for two different

inclusions, a rigid inclusion, where K is greater than 1, and an open hole, where K=-1.

Note that the results for interaction with an open hole are significantly different than
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those for a rigid inclusion, but that the t,¢nd with changing load angle is the same for

all curves. The Mode I stress intensity factor increases to a maximum when the

applied load is normal to the crack, as would be expected. This figure also portrays

another interesting phenomenon, and a limitation to the numerical treatment of the

problem. As the angle between the load and the crack approaches zero, note that the

Mode I stress intensity factor does not identically approach zero for three of the four

cases shown in the figure. In fact, for two of the cases, the stress intensity factor

becomes less than zero. A negative Mode I s~ress intensity factor denotes
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compression, and physically represents crack face overlap. Mathematically, what is

presented is correct, but physically, the two crack faces cannot overlap. To exclude

overlap in the numerical procedure would necessitate an iterative solution procedure

which would look for the possibility of the two crack faces touching, and elimination

of that portion of the crack from the solution. That procedure has not been

implemented in the present solution. Also note that there is one case in which the

Mode I stress intensity factor is greater than zero for a load parallel to the crack. This

is both physically and mathematically correct, as the presence of the inclusion can

cause a tensile stress :o act on the crack even when the load is in the same direction

as the crack.

The results presented in this section, which are original, both verify the

solution for a straight crack interacting with a rigid elliptical inclusion, and also

provide some interesting motivation for the prediction of the path of the crack near the

inclusion. These results are valid, however, only for a crack which is straight. They

cannot be applied to a crack with curvature, because as the crack curves, that curvature

provides another component of stress which is not accounted for in the present method.

In essence, the problem is a non-linear one in that the crack path is not straight. The

method presented so far in this work is linear, and is to be used to solve a non-linear

problem. The next chapters in this work will describe the means that were created to

allow the incorporation of this non-linearity into the present solution, and therefore to

incrementally predict the path of the quasi-statically growing crack. The discussion

and the results that are presented are original.
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Chapter 4

CRACK CURVATURE AND EXTENSION

4.1 Crack Kinking Solutions

As described in the survey of pertinent literature, there are several solutions

to the kinked crack problem. Probably the one most referenced recently, and most

commonly regarded as correct is the one published by K. K. Lo [241 in 1978. His

solution unified the kinked crack problem by providing correct results for both the

finite crack extension, and an infinitesimal crack extension. At the time, there was a

good deal of discussion in the literature about this problem, as described in the

literature review portion of this work, and there was also a good deal of controversy.

Since that time, Lo's solution has been accepted as being correct, and has been

referenced by many authors. His results match those of previous authors such as

Kitigawa et al. [23] for the finite crack extension, and Bilby and Cardew [18] for the

infinitesimal crack extension.

The solution proposed by Lo is one which maps the kinked crack onto a

circle using a conformal mapping technique. He then calculates potentials for the
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crack in the mapped space, solves the problem in the mapped space, and remaps the

solution onto the kinked crack. His mapping is conformal, but is not the same

mapping as that used in the present solution that maps an elliptical inhomogeneity onto

a circular region. The solution proposed by Lo, therefore, cannot be used directly in

the present work. Lo's results, however, can be used to verification the results of the

present solution once that solution is found.

Another interesting solution to the kinked and curved crack problem is that

proposed by Sur and Altiero [34]. In their solution, as described in the review of

pertinent literature in the introduction, the unknown function is the crack displacement

itself rather than the derivative of that displacement, or Burger's vector. In this way,

the singularities at the tips of the crack and at the kink are avoided. Results are

presented for this method which are in excellent agreement with other published

results.

4.2 First Order Perturbation Solution

In the early 1970's, a group of Russian mathematicians [25, 26, and 27]

solved the problem of a crack with a slightly curved extension, as shown in Figure 4.1.

The straight portion of their crack extended to the right of the origin, and the curved

extension extended to the left, as shown in the figure. In a sense, this solution avoids

the problems of the weak singularity at the kink by assuming that the crack is

smoothly curved, and therefore is not singular at the kink. They used the complex
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y

Figure 4.1 Schematic of crack problem solved by First Order Perturbation.

potential methods of Muskhelishvili, and wrote an integral equation that describes the

singular and non-singular parts of their solution. Their solution requires knowledge

of the local spatial derivatives of the crack, as a result of using perturbation methods.

What results is an integral equation in exactly the same form as that used in the

present method, with the singular and non-singular parts separated from each other,

and with a forcing function applied along the crack on the right hand side of the

equation. Their integral equation can be restated as follows:

1 1

f dT + fR(s,-)b(r)dr = o*(s) (4.1)
s-T -1

where the integral is given on the interval from -I to 1 as is done in most numerical

crack solution methods, including Gerasoulis' method, and the star on the forcing

45



function denotes that the stress is normalized and also given on the interval from -1

to 1. The elements of their kernel, denoted as R(st) are given as follows:

Ir y *2 - 1 - y'(x)y*(3+y*2)] y
(1 + y 2 )-

R,= y(y*2 -1)(y*-y(x))
(1 + y2)22)

-, = y[y*(3+y*) + y'(x)(y*2-1)]

(1 + y2)2

y(y*2 _1)(1+y,(x)y*)

(1 + y 2)2

where the capital letters and stars have significance as follows:

- y(s)-y(r)
S-T

(4.3)

Y(s,T)- Y/(s)-y*(s,)
S-T

in that they are approximations to the first and second derivatives of the y-coordinate

along the crack. The prime notation is understood to be differentiation with respect

to the crack. The n and t subscripts refer to the local normal and tangential directions

along the crack, and the x and y subscripts refer to the x and y components of the

Burger's vector. Close inspection of the four elements of this kernel reveal that the

quantities in the numerator of each term are functions of the spatial derivatives and

approximations of the spatial derivatives taken along the length of the crack, and the

denominator is the square of the length of the curved crack. What this set of equations
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contains, therefore, is an additional set of terms which take into account the curvature

of the crack, and can be directly superposed upon any straight crack solution that has

a similar form, to mimic the effect of the weak singularities inherent in crack kinking

and curving. In the present work, the stresses that can be calculated with this set of

equations are merely superposed upon the straight crack solution for a curved crack.

However, before the method can be applied to the current solution with an

elliptical inhomogeneity, local spatial first and second derivatives along the crack must

be calculated for use in Equation 4.2.

4.3 Parameterization of Crack - Cubic Spline

The simplest method of providing these derivatives is to borrow a

technique from the design of curves and surfaces, the notion of a spline. A spline is

merely a set of smoothed polynomial interpolation functions which are used to evaluate

a function at any point along an interval, if the function is only known at discrete

points on that interval. The functions used are .. moo;.h in the sense that the first

derivative is continuous along the interval, and are independent of where the function

is known or is to be evaluated. Splines have been used intensively in Computer Aided

Design for the description of space curves and surfaces. A quadratic spline uses a

second order polynomial to describe a curved line segment, a cubic spline uses a third

order polynomial, and other splines use other orders and types of polynomials. By far

the simplest splines are quadratic and cubic splines. Since a spatial second derivative
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along the crack is needed, the cubic spline is the simplest choice, as the cubic

polynomial which describes the line segment has four independent constants which can

be varied. This is the correct number for the boundary conditions that are imposed on

the endpoints of the spline. These conditions are that each endpoint of an interval

must be connected to the endpoint of the next interval, and the first derivative must

be continuous from one interval to the next, or there must be a smooth transition from

one interval to the next with no kinks in the graph of the function. This lack of kinks

in the graph of the function makes the spline a good match for the first order

perturbation solution which also avoids kinks. Therefore there are two conditions at

each end of each interval, producing a total of four conditions which must be satisfied.

There are other types of splines which are relatively difficult to program, but that can

describe extremely complex shapes. These spline functions are not necessary for this

work, as the crack path will be reasonably smooth. Fortunately, there are subroutines

that are widely available for fitting a cubic spline to a set of x and y points. The

spline routine in [44] is a very good example. The algorithm which parameterizes the

crack for the solution provides a set of x and y coordinates at the integration and

collocation points along the crack. These locations are input directly into the spline

routine, which calculates the second derivative at each location where there is a point.

The distribution of first derivatives is calculated by assessing the local tangent to the

crack at each of the integration and collocation points. These values are then sent to

a subroutine which uses them to calculate the terms in equations 4.2.
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4.4 Crack Extension

Once these results have been generated, the algorithm for extending the

crack is relatively simple. At each integration point and collocation point, there is a

local value of z, or a local position along the crack, which has x and y components.

There is also a local value of the angle of the crack 0, which is initially, when the

crack is straight, equal to 0, the initial crack angle. There is also a set of first and

second derivatives along the crack which are calculated using the spline routine as

described above. There is also a parameter n which describes the size of the matrix,

and the number of integration and collocation points. There are 2n integration points

and 2n+l collocation points which describe the crack. Since the computer will not

allow integers to be incremented by a value of 0.5, at some increment of crack

extension, n must increase by 1, as this is the basis for describing the size of the

problem. This really is a consequence of using the method of Gerasoulis, as his

equations are based upon this parameter, n. Incrementing n by 1 will add two

integration points and two collocation points to the crack parameterization. What is

needed, then, is to decide how to add these points to the crack parameterization. The

locations of the integration and collocation points are stored in complex arithmetic

arrays in the computer, in order of where they are located along the crack. The values

at the beginning of the arrays are at the close tip of the crack, and the values at the

ends of the arrays are at the far tip of the crack. Since it is growth at the close tip of
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the crack that is of interest, all of the values of the crack parameterization (integration

and collocation points) need to be shifted down two locations in their respective arrays

on the computer. This is done by starting at the end of the arrays, adding 2 to the

maximum extent of the array, and copying the value from two locations before that

location into the current location. In this way, all of the old values are shifted down

2 spots in the arrays. Two new values can then be added at the beginning of the

arrays for the z location of the new close crack tip, for the local angle 0, and for the

local first and second derivatives. This increment of crack extension will therefore be

of length l/n, and can be at any reasonable angle chosen. This technique is similar to

incrementing pointers in the Pascal and C computer languages. Fortran, unfortunately,

does not share this data type with these two other languages, and slightly more coding

is required to implement this array shifting.

4.5 Results and Comparison to Previous Work

The results of the implementation of the solution described above are given

in Figures 4.2 and 4.3. These figures give results respectively for the Mode I and

Mode II stress intensity factors, in an infinite medium with no inclusion, for an

asymmetrically kinked crack for three different angles. The crack is asymmetrically

kinked in that it has a kink at only one end, as shown on the figures. These results

compare favorably to Kitigawa et al. [231 and to the more recent results of Sur and

Altiero [341. The results given by Kitigawa et al. were verified by Lo [24], and were
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Figure 4.2. Normalized Mode I stress intensity factor versus normalized kink length
for three different kink angles, with no inclusion.

used as a verification of Sur and Altiero's work. Note that the results of the present

study are in good agreement with those previously published results, especially for

small kink angles. This is a very encouraging result, as the formulation using the first

order perturbation solution and the cubic spline crack description does not explicitly

handle the singularity at the kink. In fact, the present solution is really for a curved

crack rather than for a kinked crack. One can see, however, that the results of the
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Figure 4.3. Normalized Mode II stress intensity factors versus normalized kink
length for three different kink angles, with no inclusion.

present solution match the published kinked crack solutions quite well for kink angles

less than about 30 degrees. The results for a kink angle of 45 degrees are not in as

good agreement, and in fact fail to capture the singularity as the kink length becomes

small with respect to the crack length. Fortunately, it is expected that the curvature

of a naturally growing crack will be smooth, and therefore that any kink angles will

be small. The first order perturbation solution, therefore, seems to give good results,
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and allows the approximation of the weak singularities due to crack kinking without

explicitly describing that weak singularity.
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Chapter 5

CRACK PATH PREDICTION

5.1 Review of Crack Propagation Laws and Selection of Proper Criterion

There are several means which have been proposed to predict the direction

of the onset of crack propagation. Most of these fall into two categories, stress

methods and energy methods. Several authors [36, 37, 38, and 171 have proposed a

criterion for growth which is called the Maximum Normal Stress Criterion, in which

one looks for the direction where the Mode I stress intensity factor is greatest, and

concludes that the crack propagates in that direction. Other authors [39, 40, 41, and

43] have proposed what has come to be called the Maximum Strain Energy Release

Rate Criterion, in which one calculates the direction at which the maximum energy is

released, and then concludes that the crack propagates in that direction. A very good

review of those two major classes of crack propagation criteria, and some less well

known ideas, is given by Palinaswamy and Knauss [17]. These authors correctly state

that, for isotropic materials, and for cracks whose kink angle is fairly small (less than

about 30 degrees), the two criteria produce identical results. Actually, there has been
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a significant amount of controversy over which criterion is correct. The two criteria

begin to diverge when the angle between the load and the crack is greater than 30

degrees. There have been several experiments performed in attempts to settle this

controversy, with limited results. The divergence 5et¢,cea the two criteria is a

maximum when the load is parallel to the crack, a condition where the Maximum

Stress theory predicts a kink angle of 70.5 degrees, whereas the Maximum Strain

Energy Release Rate criterion predicts an angle of 77.4 degrees. Several authors have

produced figures which portray this divergence, and also show the scatter of

experimental data (Williams and Ewing [39], Finnie and Saith [40], Ewing and

Williams [41], and Wu [42]). The controversy has not yet been settled. For this work,

however, the fact that it is expected that the curvature of a naturally growing crack

will not exhibit even a 30 degree kink leads to the conclusion that either criterion will

be acceptable for the present discussion.

What results then, is the selection of which criterion best suits the crack

path prediction algorithm. The strain energy released by an increment of crack growth

can be calculated as follows:

G K; + 4,i (5.1)
G. (ao /-)2

where both the energy and the stress intensity factors are normalized to the value

corresponding to the stress ititensity of a finite crack in an infinite medium that is not

under the influence of an inclusion. Since, in the direction of crack growth, the value
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of the Mode II stress intensity factor is nearly zero, and the value of the Mode I stress

intensity factor changes very little, there will be very small changes in the strain

energy calculated as the square of a number close to one added to the square of a

number close to zero. In fact, for a change in direction of as much as 5 degrees, the

strain energy changes less than 1 percent. On the computer, looking for a local

mayimum of a number that is changing by about 0.1 percent per iteration is a very

difficult task.

The application of the Maximum Normal Stress Criterion, requires that the

Mode II stress intensity factor be made to come as close to zero as possible. This

stress intensity factor may, in some situations, not identically equal zero, as there may

be a Mode II component that is present in any case. That, in fact, is the situation that

arises in this problem, there is a small amount of Mode II loading present just because

of the presence of the inclusion. The application of that criterion, therefore, is

implemented as a search for the direction in which the Mode II stress intensity factor

is an absolute minimum in magnitude. It is reasonably simple to find an absolute

minimum on the computer, rather than a rela-tive maximum. For this reason, really one

of simplicity, the algorithm which predicts the of the crack searches for the angle

at which the Mode II stress intensity factor is a minimum in magnitude.
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5.2 Path Prediction Algorithm

It would appear, using the Maximum Normal Stress Criterion, that the path

prediction would be a reasonably simple task, if one is merely to find the direction at

which the shear stress vanishes. Erdogan and Sih [36] in fact, provide a formula

which can be used to predict this initial tip-off angle given the stress intensity factors

at the original crack tip. They use this equation to predict the initial tip-off angle of

a crack which is loaded in pure shear, with very good results. This procedure was

attempted in some initial tries at obtaining a path prediction, with no success. In the

present solution, the effect of the elliptical inclusion is to alter the stress field

significantly with advance of the crack. Therefore, the angle that would be predicted

from the initial crack stress intensity factors is not the angle at which the natural crack

will grow. With each infinitesimal crack extension that occurs with the naturally

growing crack, the stress field changes significantly due to the interaction with the

inclusion. This phenomenon is illustrated in Figures 5.1 through 5.7. Each of these

figures displays contours of the maximum shear stress near the tip of a growing crack

as it is interacting with an inclusion. These are the same stress contours that would

appear as isoclines in a photoelastic stress analysis of this problem. The ellipticity

ratio of the inclusion is 0.7, and the initial close crack tip is located at a z value of

(2.5,.3), or 2.5 in the x-direction, and 0.3 in the y-direction. The initial value of n is

5, so the increments of crack growth are 0.2 in length. The ellipse has a unit R, and

the crack is initially 1.0 units in length. Note that the crack grows until it reaches the
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Figure 5.1. Contours of maximum shear stress near tip of original crack, before
growth (load normal to crack, 0--0., R=I., L/R=l., K=1.67).

ellipse, and then is stopped. This is an actual prediction of crack path, and will be one

that is presented in a figure later in this work. Carcful investigation of these seven

figures shows that the contours of stress tilt significantly with the advance of the crack.

Also, they are not even similar in form on either side of the crack. In the solution

presented by Erdogan and Sih [361, these contours of stress were identically reflected

on opposite sides of the crack. Therefore, instead of a linear crack advance problem,

the present situation is in fact non-linear. The significance of this and of these figures

is that the prediction algorithm that is developed can at most be incrementally linear,
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Figure 5.2. Contours of maximum shear stress after first increment of crack growth
(load normal to crack, 0=0., R=I., original L/R=I., x=1.67).

and the correct crack propagation direction cannot be determined with information

available before the crack actually propagates.

The prediction algorithm for this problem therefore must be iterative in

nature. An initial guess is made at the angle at which the crack is going to grow, and

then is checked to see if that guess is correct. Actually, the prediction algorithm that

is used to predict the direction of crack growth is reasonably straight-forward. It

begins by initially solving the problem of a straight crack with unit length, as

described previously. Then an increment of crack length is added to the crack by
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Figure 5.3. Contours of maximum shear stress after second increment of crack
growth (load normal to crack, 0M)., R=I., original L/R=I., ic=1.67).

incrementing the problem size parameter n, then the arrays are incremented by 2, and

the values are moved down 2 locations. Next, a choice for the angle at which the

crack will deflect from its present path is made. A very efficient choice is for the

angle to grow in the same direction that the crack is already growing, or for each

increment, for there to be no more deflection. For a naturally growing crack, we

expect that the path will be relatively smooth, or that there will be very little deflection

observed during each increment of growth. Therefore, the angle that is implemented

is no deflection from the current path, or algorithmically, the angle calculated during
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Figure 5.4. Contours of maximum shear stress after third increment of crack growth
(load normal to crack, 0=0., R=I., original L/R=1., x=1.67).

the last increment of growth. The problem is then solved again, and stress intensity

factors are calculated. Once these values are known, the program proceeds to the next

iteration. At this iteration, a known angle is added to the initial guess, and the

problem is solved again. At this and subsequent iterations, however, there is no need

to .xtend the crack, nor to increment the arrays nor move the values in the arrays.

The first iteration, at zero angle and one increment of crack growth has done the

extension of the crack, and the rearranging of the values in the arrays. To perform the

second and subsequent iterations for this increment of crack growth, therefore, the first
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Figure 5.5. Contours of maximum shear stress after fourth increment of crack
growth (load normal to crack, 0--0., R=I., original L/R=I., K=1.67).

two values in each array need to be replaced with new values, as the new crack tip is

at a new value of z, with a new angle, and new first and second derivatives. The

problem then continues to be solved again and again with new kinked tips. The angle

chosen for the initial tip-off after the first iteration with no deflection is an angle of

4 degrees. This angle was chosen after quite a bit of experimentation in reducing the

number of iterations required to converge on the answer.

The next step is to determine whether the new increment of crack growth

is in the correct direction. To do this, the new Mode 11 stress intensity factor that is
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Figure 5.6. Contours of maximum shear stress after fifth increment of crack growth
(load normal to crack, 0=0., R=I., original L/R=I., Ki=1.67).

calculated in the current iteration is compared to the result from the previous

calculation. If the new K1 is less than the old value, the crack tip-off angle is

incremented by another 4 degrees and the problem is solved again. If the new Mode

II stress intensity factor is, however, greater than the old value, the algorithm must

have overshot the correct angle, or gone the wrong direction. Since it is not known

for certain whether there has been an overshot or the prediction has gone the wrong

direction, the best thing that can be done is to cut the increment in half and go back

the other direction. If there were human interaction within this algorithm, the human
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Figure 5.7. Contours of maximum shear stress just prior to the crack touching the
inclusion (load normal to crack, 0=0., R=I., original L/R=I., K-=1.67).

could guess at the new value of the kink angle, and tell the computer to try that value.

The intent of this algorithm, however, was to make the prediction automatic, and not

require human intervention. It needs, therfore, to converge on the correct angle with

a minimum of iterations, and no human intervention. The new guess at 0 will

therefore be 2 degrees less than the old value of the crack kink angle. Again, once the

problem is solved, there is a new value for K. with which to compare the old value.

The guessing and going backwards with half the increment continues for one more

reversal in direction, until the increment in angle is I degree. Once the increment is
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reduced to 1 degree, and a minimum has been found again, the kink angle is defined

as converged. This provides a solution that is incorrect by at most half that amount.

That is, the correct answer will be off by at most 1/2 of a degree if the increment of

change to the guess is 1 degree.

Once the algorithm has converged on an acceptable answer, the computer

program goes back with its final answer for the crack kink angle, 0, and solves the

new problem with the new angle. The prediction continues with the new crack and

the procedure begins again for the next increment. There is only one thing that must

be checked at each increment of growth, whether or not the crack has grown into the

inclusion. This is also reasonably simple. The distance of the new crack tip from the

origin can be easily calculated, as can the angle that a vector from the origin to that

location would make with respect to the x-axis. The distance to the edge of the ellipse

at that angle can then be calculated, and a comparison made of the two values. If the

edge of the ellipse is closer than the crack tip, the crack is still outside the inclusion,

and the algorithm can proceed. If not, the crack has grown to the edge of the ellipse,

and the program ends the prediction. Actually, the crack will grow into the inclusion,

or along the edge of the inclusion, but due to the limitations of rigidity of the

inclusion, these problems cannot be solved presently.
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5.3 Verification of Prediction

Sumi et al. [33] performed finite element crack path predictions near an

open hole, and also performed experiments to verify their predictions. Figure 5.8

shows Sumi's predictions and experiments, and predictions done with the present

algorithm. The inclusion in the present solution is a rigid one, but the value of ic

(Muskhelishvili's constant) can be set to any value required. As stated previously,

Muskhelishvili noted, in his work, at a value of K = -1 the solution for a rigid

inclusion reduces to the solution for a hole. This is helpful in that it allows the

calculation of the interaction of a crack with an open hole to be done using the results

for a rigid inclusion. This, in fact, is what was done to produce the predictions shown

in the figure. Note that the predictions done with the current algorithm match the

experimental results reasonably well, especially when the crack passes the open hole.

Figure 5.9 depicts the path of a crack which is growing naturally near

either an open hole, a rigid inclusion, or no inclusion at all. Note that the hole attracts

the crack, as has been observed by experiments (Sumi [33]), the rigid inclusion

deflects the path of the crack as would be expected, and the case with no inclusion has

no effect on .he crack at all, as would be expected. All three of these cases are actual

predictions using the method that is described in this work.

It appears that the predictions of a crack path are reasonable. The results

using the present method compare well to predictions and experiments done by others.

What remains, then, is to exercise the solution in order to learn about the paths of
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Figure 5.8. Verification of prediction by comparison to experimental results (load
normal to crack, R=I., original L/R=1., K=-l.).

cracks near inclusions.

5.4 Results

Figures 5.10 through 5.14 depict results of the crack path prediction. All

of these figures represent the actual path of the cracks. In each figure, the initial crack

is not shown, but is of length 1.O/R, extending in the positive x direction from the

right-most end of the path shown in the figure. The x and y coordinates shown in

each of the figures represent distances from the origin normalized by the average
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Figure 5.9. Paths of cracks given an open hole, no inclusion, and a rigid circular
inclusion.

radius of the ellipse, R. There is therefore no labelling in any of these figures of the

axes, as they are intended to portray x and y physical space. Figure 5.10 is the result

of a parametric study on the ellipticity ratio of the inclusion. In this figure the initial

location of the close tip of the crack is at an x-coordinate of 2.5, and a y coordinate

equal to the uppermost extent of the edge of the inclusion. For instance, for an

inclusion with an ellipticity ratio of 0.6, the initial close tip of the crack is at x = 2.5,

and y = .4. Note that the inclusions with ellipticity ratios greater than 0.4 tend to
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Figure 5.10. Paths of cracks initially aligned with the top edge of inclusions with
varying ellipticity ratios (load normal to crack, R=I., original L/R=I., 1K=1.67).

attract the crack, and the crack does not escape the inclusion. For an ellipticity ratio

of 0.4 and less, the crack is deflected, and escapes the inclusion. In this figure, the

ellipse is rigid. Figure 5.11 portrays exactly the same parametric study, only in this

case, the value of Kc is set to -1, modelling the interaction of the cracks with open

elliptical holes with varying ellipticity ratios. Note in this figure that the crack never

escapes the hole.

Figure 5.12 portrays a slightly different parametric study in which the

initial location of the crack is held fixed, at x = 2.5 and y = .6, as is the ellipticity
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Figure 5.11. Cracks initially aligned with the top edge of elliptical holes (load
normal to crack, R=I., original L/R=I., i¢=-1.)

ratio, at a value of 0.4, and the initial angle that the crack makes with the x-axis is

varied from 0 to 30 degrees in increments of 5 degrees. Note that the crack only

escapes being attracted into the side of the inclusion for the case of a 0 degree

(horizontal) crack. This is the only case in which a line drawn from the tip of the

crack, aligned parallel to the initial crack would also not interfere with the inclusion.

In Figures 5.13 and 5.14, the ellipticity ratio is again held fixed for each

figure, as is the initial angle of the crack. In these figures, the initial y-coordinate of

the close tip of the crack is varied, to study the extent to which an inclusioi, will
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Figure 5.12. Paths of cracks with varying initial angles with respect to the x-axis
(load normal to crack, R=I., original L/R=1., K=1.67).

attract or repel a crack. Figure 5.13 depicts crack paths for a rigid inclusion with an

ellipticity ratio of 0.9 (a long, flat inclusion). Note that cracks with a y-coordinate of

0.4 escape the side of the inclusion, whereas cracks with original y-coordinate of 0.3

and below are attracted into the side of the inclusion.
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Figure 5.13. Paths of cracks interacting with inclusion with ellipticity ratio 0.9, and
starting at varying initial y-coordinates (load normal to crack, R=I., original L/R=I.,
K=1.67).

In Figure 5.14, the ellipticity ratio of the inclusion is 0.4. For this

inclusion, the crack must have an initial y-coordinate of 0.6 before escaping the

inclusion. This location is, however, parallel to the upper edge of the inclusion. For

the previous case, cracks were attracted toward the inclusion from a y-coordinate

considerably above the upper extent of the inclusion. Long, flat inclusions therefore

have a greater tendency to attract cracks than do shorter rounder inclusions. It is also

interesting to look at the tip of each crack in Figure 5.14 as it approaches the

inclusion. Cracks approaching the inclusion near its major axis are merely attracted
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into the inclusion. Cracks coming in at some distance from this axis in the vertical

direction seem to be attracted toward the inclusion initially, and then as they get very

close to the inclusion, tend to be deflected from it.

0.80
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-0.40
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-2.0 -1.0 0.0 1.0 2.0

Figure 5.14. Paths of cracks interacting with an inclusion with ellipticity ratio 0.4,
and varying y-coordinates (load normal to crack, R=I., original L/R=I., -K=1.67).

There are many more of these types of studies which can be done to learn

interesting and useful things about the paths of cracks near inclusions and holes.

These results are presented therefore both to provide the reader a sense of the

flexibility and general nature of the solution as well as providing some general insight

into the quasi-static behavior of cracks near inclusions and holes.
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5.3 Energy Absorption Due to Crack Deflection

There are two components to the additional energy absorption associated

with a non-straight crack path near an inclusion. The first component is the effect of

the local shielding of the crack due to the inclusion. The ratio of the local stress

intensity factors to the applied values, or in the present case, the normalized stress

intensity factors, quantifies the amount of local shielding due to the presence of the

inclusion. In the case of an open hole, this ratio is greater than one, and therefore

describes the amount of anti-shielding due to the presence of the hole. This effect is

what is calculated and has been presented in this work. The energy absorbed or

energy shielding ratio can be calculated by determining the strain energy release rate,

as follows:

2 2
G K; + K?, (5.1)

where K, and K,, and G are the local values, and they are normalized by the values

that would exist when there is no inclusion. For the case where there is no inclusion,

therefore, this equation gives a value of 1. In the presence of an inclusion, if the crack

is shielded by the inclusion, the local K, will be less than 1, and therefore, the

normalized G will also be less than 1. This decrement is energy can be thought of L-"

the interaction toughness ratio, or the ratio of energy release rate for an inclusion

present to that with no inclusion. In the present work, this ratio can be calculated at

each increment of crack growth, and the total can be averaged by the number of

74



increments of crack growth that have occurred.

The second component of the energy absorption is that due to the path

itself. The interaction toughness ratio described above inherently assumes a rectilinear

crack path. However, if the crack is deflected from a rectilinear path, as it will be

near an inclusion, then the path itself also represents a toughening mechanism. This

crack deflection toughness ratio can also be assessed using the technique described in

this work, because the final location of the advancing crack tip is known, and the

distance that the crack would have travelled in its original rectilinear direction is also

known.

Therefore, to assess the overall energy absorption due to the crack

interacting with an inclusion, and being deflected by the inclusion durng its quasi-

static crack growth, both of these ratios should be used. The total energy absorbed,

or total toughness ratio would then be the product of these two ratios. An

implementation of that idea would be as follows for an initially horizontal crack: note

the final x-location of the growing tip of the initially horizontal crack, keeping track

of how many increments of crack growth have taken place; then divide the total x-

distance that the crack has travelled by the distance that it could have travelled if it

had not curved (increment length times number of increments). This number will be

less than one, and will also represent an energy decrement, or an amount of energy

absorbed by path deflection only. This path deflection ratio can then be multiplied by

the interaction toughness ratio calculated as an average over all of the increments of
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crack growth, to determine the overall energy absorption or toughness ratio for the

crack.

Energy absorption for several different cracks has been calculated using

this procedure, for a both a rigid inclusion and an open hole, and is presented in

Tables 5.1 and 5.2. The crack parameters are the same as those for the paths

calculated for Figures 5.10 and 5.11, where the initial tip of the crack is at an x-

coordinate of 2.5/R, and the y-coordinate is at the uppermost extent of the edge of the

inclusion. Ellipticity ratios varying from .9 to 0. --e displayed in the table. The

numbers in the table represent the various toughness ratios described, where the second

column is the overall toughness ratio, and the third and fourth columns are the path

deflection or shortening ratio, and the shielding or interaction ratio respectively.

It is interesting to note from a first glance at Table 5.1 that the greatest

energy absorption occurs when the crack is attracted into the side of the inclusion.

However, upon closer inspection of the values in the table, one can see that it is

important to compare similar cracks. The energies reported in the table for ellipticity

ratios greater than 0.4 are for cracks which are considerably shorter than those for

ellipticity ratios 0.4 and less, since they are attracted into the side of these inclusions.

For those cracks which pass the inclusion, the shortening ratio is relatively

constant. This is a reasonable result, referring to Figure 5.10. In this figure, it appears

that the paths of the cracks which escape the ellipse are nearly parallel to each other

for the set of conditions described. It is expected, therefore, that their crack length
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Table 5.1. Toughness ratios for cracks initially parallel to the top of the inclusion,
for differing inclusion ellipticity ratios.

Ellipticity Toughness Crack Length Shielding Ratio

Ratio Ratio Shortening

.9 .713 .795 .897

.8 .665 .829 .801

.7 .659 .853 .773

.6 .662 .886 .748

.5 .672 .896 .750

.4 .937 .962 .975

.3 .944 .961 .982

.2 .952 .962 .989

.1 .958 .962 .997

0. .962 .962 1.00

shortening ratios would all be similar. For those cracks which are attracted into the

side of the ellipse, all of the shortening ratios will be different, as the cracks are all

of different lengths. If the toughness ratios of the cracks interacting with inclusions

with ellipticities of 0.5 and greater are compared, it would seem that more energy is

absorbed by shorter, fatter inclusions. In these cases, the shielding ratio dominates the

energy absorption. For inclusions with ellipticities less than 0.5, however, exactly the

opposite is true. If this result is, in fact, the true case in real materials, it could have
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Table 5.2 Toughness ratios for cracks initially parallel to the top of the hole, for
different hole ellipticity ratios

Ellipticity Toughness Crack Length Anti-Shielding

Ratio Ratio Ratio Ratio

.9 3.45 .819 4.21

.8 3.21 .809 3.97

.7 2.48 .838 2.96

.6 2.36 .880 2.68

.5 2.15 .865 2.48

.4 1.89 .879 2.25

.3 1.69 .892 1.89

.2 1.72 .894 1.92

.1 1.73 .905 1.91

0. 1.55 .905 1.71

a strong impact on the design of the shapes of reinforcements.

Table 5.2 shows a somewhat different result, in that the overall toughness

ratios are greater than one, as these are results for cracks growing toward an open hole.

Since all of these cracks are eventually stopped by the open hole, a comparison of all

of the results together in this table is reasonable. Note that the crack length shortening

ratio or crack deflection toughness ratio remains relatively constant, whereas the anti-

shielding ratio, or crack inclusion interaction ratio varies significantly, and provides

a majority of the propensity for crack growth. Also, long, thin holes have a
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considerably stronger attractive effect on the crack than do rounder, more circular

holes. This result could also have a strong effect on toughening mechanisms and

reinforcing mechanisms in materials, as it seems to suggest that if the reinforcement

becomes debonded from the surrounding material, the resulting open hole will attract

a crack, and cause it to propagate.
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Chapter 6

CONCLUSIONS

6.1 Summary of Findings

In this work, a new technique has been presented which will predict the

path of a naturally growing crack near a rigid elliptical inclusion, where the stress field

can be modelled as two dimensional. The technique uses a boundary integral approach

to the solution of the stress field at the tips of the crack which is in general not

straight, and is interacting with a rigid elliptical inclusion. The crack path is

parameterized as a cubic spline, and the results of both a Green's Function solution to

the interaction of a dislocation with an elliptical inclusion, and a first order

perturbation solution to account for the generally curvilinear nature of the crack have

been employed. The singular nature of the stresses is accounted for using a numerical

technique which describes the distribution of dislocations along the crack as a

piecewise quadratic polynomial to transform the problem's resulting integral equations

into algebraic equations well suited to a matrix-type solution. Results of each step of

the analysis have been verified with previously published results that are commonly
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accepted as correct, and with experimental results of a crack propagating near an open

circular hole. New and significant results are also presented as paths of cracks

interacting with inclusions of differing ellipticity ratios, and at ciifferent orientations

with respect to the initial crack. The technique is much less computationally intensive

than current combination analytical and finite element approaches to crack path

prediction. All of the predictions presented in this work were generated on an

engineering workstation type computer. There was no need to go to a larger computer

for the predictions. This indicates that sensitivity studies using the technique are quite

easily accomplished, and provide some new insight into the mechanisms of fracture

near inclusions and/or reinforcements in materials. The angle that the crack has with

the x-axis is not limited, nor is the angle that the applied load makes with respect to

the initial crack, except for the case in which the crack faces would overlap. Original

results reported in this work were for an applied load which was oriented normal to

the original crack, mainly for simplicity in their presentation. That is not a limitation

of the method, except that the crack path direction predictor is still controversial.

There are several interesting results that come from the parametric studies

shown in figures in the previous section. First, it seems that, given the limited number

of cases examined in the figures, longer, flatter inclusions may tend to attract cracks,

whereas shorter, rounder inclusions may tend to repel cracks. This result may be

significant in the design of reinforcements in materials if the energy absorption due to

crack blunting and crack path deflection are intended to be toughening mechanisms.
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Real materials, however, have more than one inclusion, and a naturally growing crack

will interact with all of the inclusions present. The method presented in this work,

however, can be extended to deal with multiple inclusions and/or multiple cracks. The

method is not intended to provide stochastic information about cracks in reinforced

materials. Rather, it is a fundamental building block of what could become a

competent micromechanics model for dealing with cracks near inclusions in reinforced

materials, or precipitation hardened metals.

6.2 Limitations of Method

The inclusion is at present rigid and rigidly bonded to the surrounding

medium. In the predictions given, the computation was forced to stop if the crack

attempted to enter the inclusion. Also, no attention was paid to the bond strength of

the inclusion to the surrounding medium. In real materials, when a crack propagates

to an interface with a reinforcing particle, one of three things can happen. Either the

particle can debond with the material, or the crack will be arrested at the particle, or

the particle itself will fracture. Real composite materials and strengthened metals

exhibit all three of these phenomena during fracture processes. The methodology

proposed in this work does not take these effects into account, and must be extended

to include those effects if that is deemed to be critical for a certain application. The

results shown for energy absorption for cracks near open holes compared to cracks

near inclusions is evidence of this limitation. It has been known for some time that
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drilling a hole slightly ahead of an advancing crack tip will often arrest the progression

of the crack. In that case it would appear that the hole had absorbed energy when in

fact what has been done is to blunt the sharp tip of the crack, or in the terms of the

work presented here, to remove the singularity at the advancing crack tip.

There is also at present only one inclusion included in the analysis. Most

real materials of interest have a multitude of inclusions or reinforcing particles and/or

fibers in a multitudef orientations. The method can be extended to include the effect

of more than one inclusion, but a large number of inclusions would be difficult to treat

with this method. One would then have to resort to stochastic models of inclus;on or

reinforcement orientation and density to determine the energy absorbed by crack path

deflection. These models are inherently much more approximate in nature, and have

yet to yield real insight into the process of fracture in very complicated stress fields.

The method is also limited to regions whose stresses are two dimensional

in nature or that can be modelled as two dimensional, and to cases in which the two

crack faces do not touch or try to overlap. Potential methods are usually limited to

two dimensions as the potentials are significantly easier to calculate. Three

dimensional potential methods, while they exist, are not commonly used because of

their complexity. If the stress field is truly three dimensional, the techniques described

in this work should not be used. Also, if the crack is under compression in that its

faces would touch, an extension of this work would be required.
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6.3 Future Areas of Investigation

The two most likely areas that should be investigated fc-lowing this work

are those identified as limitations to the method. First, for those inclusions which are

relatively flat, with cracks that are attracted to them, modelling the crack propagation

will require following the path of the crack either through the inclusion or along the

boundary between the inclusion and the surrounding material. Each of these cases

would have to be treated separately, and new solutions would have to be found for the

stress analysis of the crack, using Green's Functions, or some other appropriate metnod

to calculate interaction stresses. Once these solutions were found, they could be

relatively easily implemented within the structure of the prediction model proposed in

this work.

The second area of future investigation that seems to come directly from

this analysis is that real materials that are reinforced do not have just one inclusion.

The potential for adding multiple inclusions in the analysis exists within the framework

of the analysis presented here. Each inclusion would merely add its own set of non-

singular terms to the kernel of the analysis, and each would also add stresses on the

right hand sides of the integral equations. Two or three inclusions would be a fairly

simple task to handle within the scope of the technique as it exists now. A hundred

or more inclusions would require the use of stochastic techniques which are outside

the scope of what has been presented. These stochastic techniques could, however, be

built from knowledge gained from parametric studies of a crack interacting with many
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fewer inclusions. In any case, these stochastic models would have to be much more

approximate in nature, and are outside the present scope. Another area which should

be investigated is some type of self consistent micromechanics model of multiple

inclusions and multiple cracks in an elastic material. Some of these techniques are

very powerful, and should be explored in relation to the solution presented here.
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APPENDIX A

CRACK PATH PREDICTION PROGRAM

The following pages contain the computer program used to perform the

crack path predictions presented in this work. The program is written in FORTRAN,

and can be compiled as is to function on most computers.
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PROGRAM CRACKY
C

C THIS PROGRAM PREDICTS THE PATH OF A NATURALLY GROWING CRACK
C WHICH IS INTERACTING WITH AN ELLIPTIC INCLUSION. THE
C INCLUSION IS RIGID AND RIGIDLY BONDED.
C
C
C
C 8:* * ** ***.8 ** *** **** ** *1 * *t * *** .** * * ** ** * * . * ** * ** *

C
C WRITTEN BY EDWARD M. PATTON, 1987-1991
C IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR
C THE DOCTOR OF PHILOSOPHY DEGREE IN MECHANICAL
C ENGINEERING AT THE UNIVERSITY OF DELAWARE
C
C HOPEFULLY THE VARIABLE NAMES THAT I HAVE CHOSEN WILL
C BE APPARENT TO THE READER OF THE CODE. IF NOT, THEN
C CAREFUL READING OF MY THESIS SHOULD ELUCIDATE.
C
C **** * * ******** * * * ** * * **** ****** ** * ** *****"'4*** * * *

C
REAL*4 M,KAP
COMPLEX RKHAT(70),SIHAT(70),Z IZ2,FAC 1,FAC2,zstr
COMPLEX XSHEAR(70,70),YSHEAR(70,70)
COMMON /SPLIN/ X(70),Y(70),Y 1 (70),Y2(70)
COMMON /GEOM/ R,MKAP,ALPHAZIZ2,STRESSPHIIN
COMMON /GEOM2/ ITIP,THETA,DZ,PHI(70)
COMMON /RUSS/ YSTAR(70,70),YPSTAR(70,70),CAPY(70,70)
COMMON /MATBLK/ ALHS(140,140),RHS(140),RSS(140),ALSS(140,140)
COMMON /BLOK3/ SI(70),RK(70),N2,H,H2,N2P2,FACIFAC2,ABSFAC
COMMON /BLOK4/ PSI(70),TAU(70)
COMMON /BLOK5/ VI(70),RKHAT,WIK(70,70),SIHAT
COMMON /BLOK6/ EJ,FJ,GJ
COMMON /KERNEI. XNORM(70,70),YNORM(70,70),XSHEAR,YSHEAR

C
C OPEN NECESSARY FILES FOR OUTPUT
C

OPEN (UNIT= 1 ,FILE='crackout',FORM='FORMATTED')
OPEN (UNIT=2,file='crackpath',FORM='FORMATED')
REWIND I
REWIND 2

C
C WRITE HEADER FOR TECPLU I" - YOU CAN USE ANY PLOTTING PROGRAM
C THAT YOU LIKE FOR OFF-LINE PLOTTING OF THE CRACK PATH.
C

WRITE (2,*) 'TITLE =

WRITE (2,*) 'VARIABLES = X Y'
WRITE (2,*) 'ZONE'

C
C SET CONSTANTS
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C
R= 1.
PI = 3.1415926536
ITIP = 0
ITRAP = 0
THETA = 0.

C
C BEGIN THE PROGRAM.
C
C THE FOLLOWING SEQUENCE OF SUBROUTINE CALLS
C SETS UP AND SOLVES THE BOUNDARY VALUE PROBLEM OF A CRACK
C INTERACTING WITH A RIGID ELLIPTICAL INCLUSION.
C
C FIRST WE GET THE REQUIRED INPUT, LIKE WHERE THE CRACK IS, AND
C WHAT SHAPE THE ELLIPSE IS
C

CALL INPUT(N)
C
C NOW THE MAIN LOOP OF THE PROGRAM
C FIRST WE NEED TO PARAMETERIZE THE CRACK ITSELF
C
100 CALL EXTEND(N,ITRAP)

C
C NOW TO SET UP THE CONSTANTS FOR GERASOULIS' METHOD
C

CALL POINTS
C
C BUILD THE MATRIX AND CALL THE MATRIX INVERTER
C

CALL BUILD(NB,IER)
C
C IF BUILD OR THE MATRIX INVERTER SEES AN ERROR, WE STOP
C

IF (IERl.EQ.I) GO TO 9999
C
C NOW TO CALCULATE THE KI (PI AND P2) AND K2 (BT AND BT-2)
C FOR THE CRACK. THE 1 END IS THE LEFT END, AND THE
C 2 END IS T'iS RIGHT END. THF CRACK IS ONLY ALLOWED TO
C GROW FROM THE LEFT END. IF YOPU WANT TO GROW FROM THE
C RIGHT END, YOU MUST EDIT SUBROUTINE EXTEND
C

PI =-COS(PHI(2))*RSS(1)*2.*PI/ABSFAC
+SIN(PHI(2))*RSS(N2P2)*2.*PVIABSFAC

BT = (COS(PHI(2))*RSS(N2P2)+SIN(PHI(2))*RSS(1))
*2.*PI/ABSFAC

P2 =-COS(PHI(N2P2))*RSS(n2p2- I)*2.*PI/ABSFAC
+SIN(PHI(N2P2))*RSS(2*N2P2-2)*2.*PI/ABSFAC

BT2 = (COS(PHI(N2P2))*RSS(2*N2P2-2)+SIN(PHI(N2P2))*RSS(N2P2-1))
'A*.*PI/ABSFAC

C
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C NOW CALCULATE THE ENERGY, EVEN THOUGH WE DO NOT USE IT
C
c G = PI**2+BT**2

C
C WRITE THE RESULTS

WRITE (*,*) Z1,P1,BT,P2,BT2,G,ABSFAC,N2
WRITE (1,*) Z1,P1,BT,P2,BT2,ABSFACN2

C
C CALL THE OUTPUT ROUTINE
C

CALL OUT
C
C WRITE COORDINATES OF NEW CRACK TIP ON FILE 2
C

XTIP = REAL(SIHAT(2))
YTIP = AIMAG(SIHAT(2))
WRITE (2,10) XTIP,YTIP

10 FORMAT (G15.6,3X,G15.6)
C
C NOW FOR THE CRACK PATH PREDICTION. THIS IS AN ITERATIVE
C PROCESS THAT KEEPS GOING UNTIL N GETS TOO LARGE, OR THE
C CRACK GROWS PAST THE POINT X = -3
C
C GROW OFF THE LEFT TIP
C

ITIP = I
C
C TEST 30 SEE WHETHER WE HAVE REACHED OUR LIMIT
C

IF (N2.LE.150.AND.REAL(ZI).GT.-3.) THEN
C
C SET CONSTANTS AND COUNTERS FOR THE PREDICTION
C

THOLD = 0.
BTOLD = .2
IBACK =0
THETA =0.
DTH'IA = 4.*PI/180.
NITTER = 0

C
C CALCULATE THE POSITION OF THE NEW CRACK TIP, AND SEE IF IT
C IS INSIDE THE ELLIPSE
C

110 ZSTR = ZI-CMPLX(COS(THETA)*DZ,SIN(THETA)*DZ)
XTIP = REAL(ZSTR)
YTIP = AIMAG(ZSTR)
ZSANG = ATAN(YTIP/XTIP)
ZSTRMAG = SQRT(XTP**2+YTIP**2)
RADIUS = SQRT((1.-M*M)**2/(COS(ZSANG)**2*(.-M)**2
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' .,AN(ZSANG)**2*(I.+M)**2))

C
C IF THE CRACK TIP IS IN THE ELLIPSE, STOP
C

IF (ZSTRMAG-RADIUS.LT.0.) GO TO 9999
C
C OTHERWISE, GO ON TO THE ITERATIVE SOLUTION. I HAVE
C GIVEN THIS THING AN ARBITRARY MAXIMUM OF 50 ITERATIONS
C TO FIND WHERE IT WANTS TO GO. IF THE PROBLEM IS POSED
C CORRECTLY, YOU SHOULD NEED NO MORE THAN 15 ITERATIONS,
C WITH AN AVERAGE OF ABOUT 10 PER INCREMENT OF GROWTH
C

DO 200 ITRAP = 1,50
C
C SAME SET OF SUBROUTINES. WHAT THIS DOES IS TO TRY
C SEVERAL DIFFERENT DIRECTIONS UNTIL IT FINDS THE
C DIRECTION OF MINIMUM SHEAR STRESS. THEN IT GOES
C BACK TO STATEMENT 100 AND STARS FRESH WITH A NEW
C CRACK GROWTH INCREMENT
C

CALL EXTEND(N,ITRAP)
C

CALL POINTS
C

CALL BUILD(NB,IER)
C

IF (IER.EQ.1) GO TO 9999
C

Pi =-COS(PHI(2))*RSS(I)*2.*PI/ABSFAC
+SIN(PHI(2))*RSS(N2P2)*2.*PI/ABSFAC

bt = (COS(PHI(2))*RSS(N2P2)+SIN(PHI(2))*RSS(I))
*2.*PI/ABSFAC
G = PI**2+BT**2

C
C LET THE USER KNOW THAT YOU HAVE COMPLETED AN INTERATION,
C AND SHOW HIM THE PERTINENT RESULTS
C

WRITE (*,*) PI,BT,G,THETA*180./PI
C
C NOW, IF THE NEW K2 IS LESS THAN THE OLD K2, DIVIDE DTHETA
C IN HALF AND GO BACKWARDS. IF YOU HAVEN'T BEEN BACKWARDS
C TWICE YET, YOU HAVEN'T FOUND THETA
C

IF (ABS(BT).GT.BTOLD.AND.IBACK.LT.2) THEN
DTHETA = -DTHETAi2.
THOLD = THETA

205 THETA = THETA+DTHETA
C
C PUT SOME REASONABLE LIMITS ON THETA
C
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IF (THETA* 180.IPI.GT.90.) THEN
THETA = 90.*PI/180.
GO TO 201

ELSEIF(THETA* 180.P.LT.-9O.) THEN
THETA = -90.*PI180.
GO TO 201

ENDIF
C
C CHECK TO SEE IF YOU ARE INSIDE THE ELLIPSE
C

ZSTR =SlIHAT(4)-CNIPLX(COS(THETA)*DZ,SIN(THETA)* DZ)
XTIP =REAL(ZSTR)

YTIP =AIMAG(ZSTR)

ZSANG = ATAN(YTIP/XTIP)
ZSTRMAG = SQRT(XTIP**2+YTIP**2)
RADIUS = SQRT(( 1.-M*M)**2(COS(ZSANG)**2* (I .-M)* *2

+SIN(ZSANG)**2*(1.+M)**2))
IF (ZSTRMAG-RADlUS.LT.Cv.) GO TO 9999

C
C YOU JUST WENT BACKWARDS, SO INCREMENT IBACK
C

IBACK = IBACK+1
C
C RESET THE VALUE OF OLD K2
C

BTOLD = ABS(BT)
C
C AND COUNT THE ITERATION
C

NIFFER = NITTER+l
C
C TRY AGAIN
C

GO TO 200
C
C OR IF YOU ARE STILL GOING DOWN IN MAGNITUDE, GO THE SAME
C DIRECTION AND RESET OLD K2
C

ELSEIF (ABS(%BT).LE.BTOLD) THEN
BTOLD = ABS(BT)
THOLD = THETA

206 THETA =THETA+DTHETA
C
C SET LIMITS ON THETA
C

IF (THETA* 180./PI.GT.90.) THEN
THETA = 90.*PI/180.
GO TO 201

ELSEIF(TI h-rTA* 180.iPI.LT.-90.) THEN
THETA = -90.*PI/180.
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GO TO 201
ENDIF

C
C CHECK TO SEE IF YOU HAVE GONE IN THE ELLIPSE
C

ZSTR = SIHAT(4)-CMPLX(COS(THETA)*DZ,SIN(THETA)*DZ)
XTIP = REAL(ZSTR)
YTIP = AIMAG(ZSTR)
ZSANG = ATAN(YTIP/XTIP)
ZSTRMAG = SQRT(XTIP**2+YTIP**2)
RADIUS = SQRT((I.-M*M)**2/(COS(ZSANG)**2*(1.-M)**2

+SIN(ZSANG)**2*(I.+M)**2))

IF (ABS(RADIUS-ZSTRMAG).LT..00001) GO TO 9999
C
C COUNT THE ITERATION AND GO AGAIN
C

NITTER = NITER+I
GO TO 200

C
C OR, IF THE NEW K2 IS BIGGER, AND YOU HAVE BEEN BACKWARDS
C TWICE, YOU HAVE FOUND THETA. INCREMENT THE CRACK AND
C GO OUT OF THE INNER LOOP
C

ELSEIF (ABS(BT).GT.BTOLD.AND.IBACK.EQ.2) THEN
THETA = THOLD
GO TO 201

ENDIF
C

CALL OUT
C

200 CONTINUE
C

201 CONTINUE
C
C TELL THE USER
C

WRITE (*,*) 'AT N*2 ',N2,' THETA = ',THETA*180./PI,
' ITERATIONS ',NITTER

C
C AND GO BACK TO THE BEGINNING
C

GO TO 100
C
C HERE IS WHERE YOU GO IF N IS TOO BIG OR IF THE CRACK
C IS FAR ENOUGH TO THE LEFT
C

ENDIF
C
C ALL DONE
C
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9999 CONTINUE
CLOSE (UNIT= 1)
CLOSE (UNIT=2)
STOP
END

C
C

SUBROUTINE INPUT(N)
C
C

C THIS ROUTINE PROVIDES ALL OF THE REQUIRED INPUT TO CRACKY
C

C
REAL*4 M,KAP
COMPLEX RKHAT(70),SIHAT(70),Z IZ2,FAC 1,FAC2
COMPLEX XSHEAR(70,70),YSHEAR(70,70)
COMMON /GEOM/ R,M,KAP,ALPHAZIZ2,STRESSPHIIN
COMMON /GEOM2/ ITIP,THETA,DZ,PHI(70)
COMMON /MATBLK/ ALHS(140,140),RHS(140),RSS(140),ALSS(140,140)
COMMON JBLOK3/ SI(70),RK(70),N2,HH2,N2P2,FACIFAC2,ABSFAC
COMMON /BLOK4/ PSI(70),TAU(70)
COMMON /BLOK5/ VI(70),RKHAT,WIK(70,70),SIHAT
COMMON JBLOK6/ EJ,FJ,GJ
COMMON /KERNEL/ XNORM(70,70),YNORM(70,70),XSHEAR,YSHEAR

C
CONVER = 3.14159265361180.

200 FORMAT (2G10.4)
C
C CRACK HAS A LENGTH OF 1 UNIT, WITH LEFT TIP AT ZI AND
C RIGHT TIP AT Z2
C

CLEN = 1.
WRITE (*,*) 'WHERE IS THE CLOSE TIP OF THE CRACK'
READ (*,200) ZI
WRITE (*,*) ' NOW WHAT IS THE ELLIPTICITY RATIO OF THE ELIPSE (0 TO 1)'
READ (*,200) M
WRITE (*,*) 'WHAT IS THE ANGLE OF THE CRACK'
READ (*,200) PHIIN
PHIIN = PHIIN*CONVER
SINPHI = SIN(PHIIN)
COSPHI = COS(PHIIN)

C
C SET UP THE CRACK
C

Z2 = CMPLX(REAL(ZI)+CLEN*COSPHI,AIMAG(Zl)+CLEN*SINPHI)
WRITE (*,100) Z1,Z2,PHIIN/CONVER

100 FORMAT (' Z1 = ',2G 10.4,' Z2 = ',2G 10.4,' PHI = ',G 10.4)
C
C UNCOMMENT THE COMMENTED LINES AND COMMENT OUT THE ASSIGNMENTS
C IF YOU WANT TO HAVE MORE CONTROL OVER THE INPUT
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C
C WRITE (*,*) 'WHAT IS THE ANGLE BETWEEN THE CRACK AND THE LOAD'
C READ (*,20)) ALPHA
C ALPHA = ALPHA*CONX!ER+PHIIN

ALPHA = 90.*CONVER+PHHN
N= 5

C WRITE (*,*) 'WHAT WOULD YOU LIKE FOR THE VALUE OF N'
C READ (,)N

WRITE (,)'WHAT WOULD YOU LIKE FOR KAPPA'
READ (*,200) KAP

C KAP =1.67
C
C NOW SET UP THE CRACK PARAMETERS THAT WE NEED FOR THE SOLUTION
C

FACI = (Z2.iZl)12.
FAC2 = (Z2-Zl)t2.
ABSFAC = SQRT(REAL(FAC2)**2+AIMAG(FAC2)**2)
DZ = ABSFAC/FLOAT(N)

C
C DONE
C

RETURN
END

C
SUBROUTINE OUT

C
C

REAL*4 MKAP
COMPLEX RKHAT(70),SIHAT(70),Z IZ2,FAC 1 FAC2
COMPLEX XSHEAR(70,70),YSHEAR(70,70)
COMMON /GEOM/ R,M,KAP,ALPHAZI Z2,STRESSPHIIN
COMMON /GEOM2I ITIP,THETA,DZPHI(70)
COMMON /MATBLK/ ALHS(140,140),RHS(140),RSS( 140),ALSS( 140,140)
COMMON IBLOK3I SI(70),RK(70),N2,HH2,N2P2,FAC 1 FAC2,ABSFAC
COMMON /BLOK4/ PSI(70),TAU(70)
COMMON JBLOK5/ VI(70),RKHAT,WIK(70,70),SIHAT
COMMON IBLOK6/ FJ,FJ,GJ
COMMON /KERNEL/ XNORM(70,70),YNORM(70,70),XSHEAR,YSHEAR

C
C ********************************

C THIS ROUTINE PERFORMS ALL OF THE OUTPUT NECESSARY FOR CRACKY
C *******************************

C
C

WRITE (1,*) ' Output from Crack Program'
C

WRITE (1,*)
C

WRITE (1,200) (RSS(D)*2.*3. 141 5926536/ABSFAC,I= 1,2*N2P2-2)
WRITE (1,*)
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WRITE (1,200) (RHS(I),I=I,2*N2P2-2)
200 FORMAT (G15.5)

C
WRITE (1,*)

C
C DONE
C

RETURN
END

C
C

SUBROUTINE EXTEND(N,ITRAP)
C
C
C

C THIS ROUTINE PROVIDES THE PROPER VALUES OF THE COORDINATES
C OF THE EXTENDED CRACK IN TABULAR FORM, AND ALSO INCREASES
C N BY THE APPROPRIATE AMOUNT (1), AT AN ANGLE CALCULATED
C IN FUNCTION CRACK
C
C

REAL*4 M,KAP
COMPLEX RKHAT(70),SIHAT(70),Z1,Z2,FAC 1,FAC2
COMPLEX XSHEAR(70,70),YSHEAR(70,70)
COMMON /GEOM/ R,M,KAP,ALPHAZ1,Z2,STRESSPHIIN
COMMON /GEOM2/ ITIP,THETA,DZPHI(70)
COMMON /SPLIN/ X(70),Y(70),Y 1 (70),Y2(70)
COMMON /MATBLK/ ALHS(140,140),RHS(140),RSS(140),ALSS(140,140)
COMMON /BLOK3/ SI(70),RK(70),N2,H,H2,N2P2,FACIFAC2,ABSFAC
COMMON /BLOK4/ PSI(70),TAU(70)
COMMON /BLOK5/ VI(70),RKHAT,WIK(70,70),SIHAT
COMMON /BLOK6/ EJ,FJ,GJ
COMMON /KERNEL/ XNORM(70,70),YNORM(70,70),XSHEAR,YSHEAR

C
C ONLY INCREMENT N IF WE HAVE BEEN THROUGH THE FIRST SOLUTION
C AND AT THE FIRST ITERATION LOOKING FOR THETA (ITRAP = 1)
C

IF (ITIP.EQ.I.AND.ITRAP.EQ.1) N=N+I
C

N2 = N*2
N2P2 = N2+2
N2P2M1 = N2P2-1
H = 1./FLOAT(N)

C
C FOR ITERATIONS AFTER THE FIRST, BACK OFF TO WHERE THE CRACK
C TIP WAS AT THE START OF THIS INCREMENT
C

IF(ITRAP.GT.I) ZI = SIHAT(4)
C
C FIRST TIME THROUGH FOR THE WHOLE PROGRAM, SET UP THE CRACK
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C
IF (ITIP.EQ.0) THEN

C
DO 1 I = 2,N2P2

SIHAT(I) = ((FLOAT(I)-2.)*H-1.)*FAC2+FACl
IF (I.EQ.2) SIHAT(I) = ZI
IF (I.EQ.N2P2) SIHAT(I) = Z2
PHI(I) = PHIIN
X(I-1) = REAL(SIHAT(I))
Y(I-1) = AIMAG(SIHAT(I))
YI(I-1) = TAN(PHI(I))

1 CONTINUE
C
C CALL THE SPLINE ROUTINE
C

CALL SPLINE (N2P2M1,X,Y,Y1,Y2)
DO 2 K = 2,N2P2

RKHAT(K) = (((FLOAT(K)-2.)*H-1.)+H/2.)*FAC2+FAC1
2 CONTINUE

C
C FOR SUBSEQUENT TRIPS THROUGH THE PROGRAM, WE NEED TO
C ADD AN INCREMENT IN THE SPECIFIED DIRECTION, AND THEN
C GET THE FIRST AND SECOND SPATIAL DERIVATIVES OF THE
C CRACK BY CALLING SPLINE
C

ELSEIF (ITIP.EQ.1) THEN
C
C FIRST ITERATION AGAIN, SHOVE ALL OF THE CRACK GEOMETRY
C TWO SPACES HIGHER IN EACH OF THE ARRAYS THAT HOLD CRACK
C GEOMETRY
C

IF (ITRAP.EQ.1) THEN
DO 5 J=2,N2

I = N2P2+2-J
RKHAT(I) = RKHAT(I-2)
SIHAT(I) = SIHAT(I-2)
PHI(I) = PHI(I-2)
X(I-1) - X(I-3)

Y(I-l) = Y(I-3)
Yl(I-l) = Y1(I-3)

5 CONTINUE
ABSFAC= ABSFAC+DZ
ENDIF

C
C THIS PART ACTUALLY PERFORMS THE INCREMENT
C

PHI(3) = -THETA
PHI(2) = -THETA
SIHAT(2) = Z1-CMPLX(COS(PHI(2))*2.*DZ,SIN(PHI(2))*2.*DZ)
SIHAT(3) = Zi-CMPLX(COS(PHI(3))*DZ,SIN(PHI(3))*DZ)
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RKHAT(2) = ZI .CMPLX(COS(PHI(2))*3.* DZ/2.,SIN(PHI(2))*3.*DZ/2.)
RKHAT(3) = ZI .CMPLX(COS(PHI(3))*DZ/2SIN(PHI(3))*DV2.)
X(I) = REAL(SIHAT(2))
X(2) = REAL(SIHAT(3))
Y(I) = AIMAG(SIHAT(2))
Y(2) = AIMAG(SIHAT(3))
Y1I(I) = TAN(PFI(2))
Y1(2) = TAN(PIH(3))
ZI = SIHAT(2)

C
C GET OUR SPATIAL DERIVATIVES
C

CALL SPLINE (N2P2MIX,Y,YI,Y2)
C

ENDIF
C

RETURN
END

C
SUBROUTINE SPLINE (N,X,Y,Y1,Y2)

C
C
C THIS ROUTINE, EXERPTED FROM "NUMERICAL RECIPES IN FORTRAN",
C CALCULATES THE LOCAL FIRST AND SECOND DERIVATIVES FOR USE
C IN SUBROUTINE RUSSIAN
C
C

DIMENSION U(70),X(70),Y(70),Y 1(70),Y2(70)
C

YP1 I .e35
YPN = .e35
DO 10 IN = 1,N

Y2(IN) = 0.
10 CONTINUE

IF (YPI.GT..99E30) THEN
Y2(1) = 0.
U(l) = 0.

ELSE
Y2(1) = -.5
U(1) = (3./(X(2)-X(1 )))*((Y(2)-Y( 1))I(X(2)-X( 1))-YPI)

ENDIF
DO 11 I=2,N-1

SIG = (X(T)-X(I-1))/(X(I+1)-X(I- 1))
P = SIG*Y2(1-1)+2.
Y2(1) = (SIG-I.)/P

11I CONTINUE
IF(YPN.GT..99E30) THEN

QN =0.
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UN = 0.
ELSE

QN =5
UN =(3.f(X(N}.X(N-1)))*(YPN-(Y(N).YQJ..I-))f(X(N)-X (N- I)))

ENDIF

DO 12 K = N-1,1,-1
Y2(K) = Y2(K)*Y2(K+1)+U(K)

12 CONTINUE
RETURN
END

C
C

SUBROUTINE POINTS
C
C
C CALCULATES THE SI AND) RK QUANTITIES FOR GERASOULIS'
C TECHNIQUE. ALSO SETS UP THE WEIGHT FUNCTIONS BY CALLING
C SUBROUTINE VWGT AND WTFUNS
C
C

REAL*4 M,KAP
COMPLEX RKHAT(70),SIHAT(70),Z 1Z2,FAC1 FAC2
COMPLEX XSHEAR(70,70),YSHEAR(70,70)
COMMON /GEOM/ RM,KAP,ALPHAZI Z2,STRESSPHIIN
COMMON /GEOM2/ ITP,THETA,DZ,PHI(70)
COMMON IMATBLK/ ALHS( 140,140),RHS(140),RSS(140),ALSS(140, 140)
COMMON IBLOK3/ SI(70),RK(70),N2,H,H2,N2P2,FAC 1 FAC2,ABSFAC
COMMON /BLOK4/ PSI(70),TAU(70)
COMMON /BLOK5/ VI(70),RKHAT,WIK(70,70),SIHAT
COMMON IBLOK6/ EJFJ,GJ
COMMON /KERNEL/ XNORM(70,70),YNORM(70,70),XSHEAR,YSHEAR

C
N2P2MI = N2P2-I

C
C CALCULATE SI ARRAY
C

DO I1I = 2,N2P2

SI(2) =-1.

SI(N2P2) = 1.
I CONTINUE

C
C CALCULATE RK ARRAY
C

DO 2 K = 2,N2P2
RK(K) = SI(K)+H/2

2 CONTINUE
C
C SET CONSTANT WEIGHTS
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C
CALL VWGT

C
DO 3 K = 2,N2P2M[I

DO 4 1 = 2,N2P2
CALL WTFUNS(RK(K),I)
WIK(K,I) =FJ+FJ+GJ

4 CONTINUE
3 CONTINUE

C
RETURN
END

C
C

SUBROUTINE VWTFUNS(S,K)
C
C
C THIS SUBROUTINE COMPUTES THE APPROPRIATE WEIGHT FUNCTIONS FOR
C THE PIECE-WISE SMOOTH POLYNOMIAL APPROXIMATION
C
C

REAL*4 M,KAP
COMPLEX RKHAT(70),SIHAT(70)7 1 Z2,FAC 1 FAC2
COMPLEX XSHEAR(70,70),YSHEAR(70,70)
COM[MON /GEOMI R,M,KAP,ALPHAZ1 Z2,STRESS PHIIN
COMMON /GEOM2/ ITIP,THEITA,D)Z,PHI(70)
COMMON /M[ATBLK/ ALHS(140,140),RHS(140),RSS( 140),ALSS(140,140)
COMMON /BLOK3I SI(70),RK(70),N2,H,H2,N2P2,FAC I FAC2,ABSFAC
COMMON JBLOK4/ PSI(70),TAU(70)
COMMON /BLOK5/ VI(70),RKHAT,WIK(70,70),SIHAT
COMMON /BLOK6/ EJ,FJ,GJ
COMMON JKERNELJ XNORM(70,70),YNORM(70,70),XSHEAR,YS HEAR

C
C
C CHECK TO SEE IF KIS ODD OR EVEN
C

KCHEKI = K/2
KCHEK2 = 2*KCHEKI
IF (KCHEK2.NE.K) THEN

C
C K IS ODD
C

EJ = 0.
GJ = 0.
J = (K+1)12
Fl = -RM(S,SI(2*J),SI(2*J-2)J)/H2
RETURN

C
ELSEIF (K.EQ.2) THEN

C
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C K =2
C

FJ =0.
GJ =0.
J = (K+2)/2
El = RM(S,SI(2*J),SI(2*J-1)J)/(2.*H2)
RETURN

C
ELSEIF (K.EQ.N2P2) THEN

C
C K =N2P2
C

FJ = 0.
EJ = 0.
J = K/2

GJ= RM(S,SI(J*2- l),SI(J*2-2),J)/(2.*H2)
RETURN

C
ELSE

C
C K IS EVEN
C

=(K+2)/2

El = RM(S,SI(J*2),SI(J*2-1),J)/(2.*H2)
J = K/2

GJ RM(S,SI(J*2-1),SI(J*2-2),J)/(2.*H2)
FJ 0.
RETURN

C
ENDIF
END

C
C

SUBROUTINE VWGT
C
C
C THIS ROUTINE COMPUTES THE CONSTANTS FOR THE POLYNOMIAL
C APPROXIMATION - SEE GERASOULIS' PAPER
C
C

REAL*4 M,KAP
COMPLEX RKHAT(70),SIHAT(70),Z 1 Z2,FAC 1,FAC2
COMPLEX XS HEAR(70,70),YSHEAR(70,70)
COMMON /GEOM/ R,M,KAP,ALPHAZIZ2,STRESSPIIN
COMMON /GEOM2I ITP,THETA,DZPI(70)
COMMON /MATBLK/ ALHS(140,140),RHS( 140),RSS( 140),ALSS( 140,140)
COMMON JBLOK3/ SI(70),RK(70),N2,H,H2,N2P2,FAC 1 FAC2,ABSFAC
COMMON /BLOK4/ PSI(70),TAU(70)
COMMON /BLOK5/ VI(70),RKHAT,WIK(70,70),SIHAT
COMMON /BLOK6/ EJ,FJ,GJ
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COMMON IKERNEI,/ XNORM(70,70),YNORM(70,70),XSHEAR,YSHEAR
C
C

H2 = H**2
NPI = N2P2/2

C
DO 1 J3I = 2,N2P2

PSI(JI) = ASIN(SI(J1))
I CONTINUE

C
DO 2 J2 = 1,NP1

TAU(J2) = TAN(PSI(J2*2)/2.)
2 CONTINUE

C
DO 3 B3 = 2,N2P2

33CHKI = J3/2
J3CHK2 = J3CHKI*2

C
C B3IS ODD
C

IF (J3.NE.J3CHK2) THEN
C

AJ = 0.
CJ = 0.
B3P = (J3+1)/2
BJ = -HCON(J3P,SI(J3P*2),SI(J3P*2-2))fHi2
GO TO 4

C
C J3 =2
C

ELSEIF (J3.EQ.2) THEN
C

B3P = 2
AJ HCON(J3P,SI(J3P*2),SI(J3P*2 1 ))/(2.*H2)
BJ = 0.

Cj= 0.
GO TO 4

C
C B = N2P2
C

ELSEIF (J3.EQ.N2P2) THEN
C

B3P =NPI

CJ HCON(J3P,SI(J3P*2 1 ),SI(J3P*2-2))/(2.* H2)
Al 0.
BI= 0.
GO TO 4

C
C J3 IS EVEN
C
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ELSE
C

BJ = 0.
J3P =(J3+2)/2

AJ = HCON(J3P,SI(J3P*2),SI(J3P*2- I))/(2.*H2)
J3P =J3/2

CJ = HCON(J3P,SI(J3P*2-1),SI(J3P*2-2))/(2.*H2)
C

ENDIF
C

4 VI(J3) = AJ+BJ+CJ
C

3 CONTINUE
RETURN
END

C
C

FUNCTION HCON(J,X,Y)
C
C
C THIS FUNCTION IS USED TO DETERMINE THE WEIGHTS
C FOR THE PIECEWISE SMOOTH POLYNOMIAL APPROXIMATION
C
C

REAL*4 M,KAP
COMPLEX RKHAT(70),SIHAT(70),Z 1Z2,FAC I,FAC2
COMPLEX XSHEAR(70,70),YSHEAR(70,70)
COMMON /GEOM/ R,M,KAP,ALPHA.ZI Z2,STRESS,?HIIN
COMMON /GEOM2/ ITIP,THETA,DZ,PHI(70)
COMMON IMATBLK/ ALHS( 140, 140),RHS( 140),RSS( 140),ALSS( 140,140)
COMMON /BLOK3/ SI(70),RK(70),N2,H,H2,N2P2,FAC 1 FAC2,ABSFAC
COMMON IBLOK4/ PSI(70),TAU(70)
COMMON IBLOK5/ VI(70),RKI-ATWIK(70,70),SIHAT
COMMON /BLOK6/ EJ,FJ,GJ
COMMON /KERNEL/ XNORM(70,70),YNORM(70,70),XSHEAR,YSHEAR

C
C

J2 = J*2
TERMI = (X*Y+.5)*(PSI(J2)-PSI(J2.2))
TERM2 = (X+Y)*(COS(PSI(J2))-COS(PSI(J2-2)))
TERM3 = (SIN(2.*PSI(J2))-SIN(2.*PSI(32-2)))/4.
HCON = TERM1I+TERM2-TERM3
RETURN
END

C
C

FUNCTION RM(S,X,YJ)
C
C
C THIS FUNCTION IS CALLED BY POINTS AND IS USED
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C IN DETERMINING WEIGHTS FOR THE POLYNOMIAL
C APPROXIMATION
C
C

REAL*4 M,KAP
COMPLEX RKHAT(70),SIHAT(70),Z I Z2,FAC I,F-AC2
COMPLEX XSHEAR(70,70),YSHEAR(70,70)
COMMON /GEOM/ R,M,KAP,ALPHAZ 1Z2,STRESS PHIIN
COMMON /GEOM2I ITIP,THETA,DZ,PHI(70)
COMMON /MATBLK/ ALHS(140,140),RHS(140),RSS( 140),ALSS( 140,140)
COMMON /BLOK3I SI(70),RK(70),N2,H,I-2,N2P2,FAC IFAC2,ABSFAC
COMMON /BLOK4/ PSI(70),TAU(70)
COMMON /BLOK5/ VI(70),RKHAT,WIK(70,70),Sl HAT
COMMON JBLOK6/ EJ,FJ,GJ
COMMON /KERNEL/ XNORM(70,70),YNORM(70,70),XS HEARN ,YHEAR

C
C

JM1 J-1
12 = 1*2
J2M2 = J2-2

C
AINTI = SQRT(I.-S**2)
AUNT= (-1 .+AINTI+S*TAU(J))*TAU(JMI )+S-( 1.+AINTI )*TAU(J)
AINT3 = (-1.-AINTI+S*TAU(J))*TAU(JMI)+S-(1..AINTI)*TAU(J)
AINT4 = ABS(AtNT2/AINT-3)
AJOES =ALOG(AINT4)/AINT1l

C
TERMI = SQRT(I.-SI(J2)**2)
TERM2 = SQRT(l.-SI(J2M2)**2)
TERM3 = (S**2+X*Y-S*(X+Y))*AJOFS
TERM4 = (S-X-Y)*(PSI(J2)-PSI(J2M2))

C
RM =-TERM 1+TERM2+TERM3+TERM4
RETURN
END

C
C

SUBROUTINE BUILD (NBIER)
C
C
C THIS ROUTINE BUILDS THE MATRIX AND PERFORMS THE
C INVERSION OF THE MATRIX TO SOLVE THE PROBLEM
C ************4******************4************

C
REAL*4 M,KAP
COMPLEX RKHAT(70),SIHAT(70),ZI Z2,FACI ,FAC2
COMPLEX XSHEAR(70,70),YSHEAR(70,70)
COMMON /GEOM/ R,M,KAP,ALPHAZI Z2,STRESS PHIIN
COMMON /GEOM2/ ITIP,THETA,DZ,PHI(70)
COMMON /SPLIN/ X(70),Y(70),Y1I(70),Y2(70)
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COMMON /RUSS/ YSTAR(70.70),YPSTAR(70,70),CAPY(70,70)
COMMON /MATBLK/ ALHS(140,140),RHS(140),RSS( 140),ALSS(140,140)
COMMON /BLOK3/ SI(70),RK(70),N2,HH-2,N2P2,FAC 1 FAC2,ABSFAC
COMMON JBLOK4/ PSI(70),TAU(70)
COMMON /BLOK5/ VI(70),RKH-AT,WIK(70,70),SIHAT
COMMON /BLOK6/ EJ,FJ,GJ
COMMON JKERNEL/ XNORM(70,70),YNORM(70,70),XSHEAR,YS HEAR
COMPLEX SFORCEPFORCE

C
C ZERO OUT THE MATRICES AND RIGHT HAND SIDES, INCLUDING
C THE RUSSIAN STUFF
C

DO 30 IA =1,N2P2
RHS(IA) =0.

RSS(IA) =0.

DO 30 JA = 1,N2P2
ALHS(IAJA) =0.

ALSS(IAJA) =0.

YSTAR(iAJA) = 0.
YPSTAR(IAJA) = 0.
CAPY(IAJA) = 0.

30 CONI'NUE
N2P2MI = N2P2-1
NB = 2*N2P2MI

C
C NOW SET UP THE INTERACrTION TERMS FROM THE KERNEL
C

DO 50 I = 2,N2P2
DO 60 3 = 2,N2P2M1
CALL KERNEL(SIHAT(I),RKHAT(J),IJ)

60 CONTINUE
50 CONTINUE

C
C
C AND NOW THE STUFF FROM THE RUSSIAN PAPER
C

CALL RUSSIAN (N2P2)
C
C
C NOW LOOP THROUGH AND SET UP THE LEFT AND RIGHT SIDES
C OF TH4E EQUATION (A)X(SOLUTION) = (B)
C

DO I JN = I,N2P2M I
J = JN+1
IT = JN

C
C GET THE LOCAL ANGLES RIGHT. AND THFIR 'ZTNES k~ND COSINES
C

SINPHI =SIN(PHI(J))

COSPHI =COS(PHI(J))
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COS3PHI =COS(3.*PHI(i))
SIN3PHI =SIN(3.*PHI(J))
JT = JN+N2P2MI

C
C DO THE RIGHT HAND SIDE FIRST
C

IF(J.EQ.N2P2) THEN
RHS(JN) =0.

RHS(JT) =0.

ELSE
RHS(JN) =COSPHI**2*REAL(PFORCE(RKHAT(J))

+SFORCE(RKHAT(J)))+SINPHI**2*REAL(PFORCE(RKHAT(J))
-SFORCE(R KHAT(J)))-2. *S INPHI *COS PHI
*AIMAG(SFORCE(RKHAT(J)))

RHS(JT) = -2.*SlNPHI*COSPHI*(REAL(SFORCE(RKHAT(J))))
+(SlNPH1**2-COSPHI**2)*AIMAG(SFORCE(RKHAT(J )))

ENDIF
C
C NOW THE REST OF THE MATRIX
C

DO I IY =IN2P2MI
I =IY+I
ITAU =IY
IX =IY+N2P2MI

C
C FIRST THE KERNEL STRESSES
C

XSIGX =XNORM(IJ)-RFAL(XSHEAR(IJ))
XSIGY =XNORM(lj)#REAL(XSH-EAR(1J))
XSIGXY = AIMAG(XSHEAR(IJ))
YSIGX =YNORM(IJ).REAL(YSHEAR(TJ))
YSIGY =YNORM(IJ)+REAL(YSH-EAR(IJ))
YSIGXY =AIMAG(YSHEAR(IJ))

C
C NOW THE ANGULAR COEFFICIENTS FOR AN ARBITRARILY ORIENTED
C STRAIGHT CRACK
C

BYX= COSPHI+COS3PHI
BYY = 3. *COSPHI-COS3PHI
BYXY =SIN3PHI-SINPHI
BXX =-(3.*SINPHI+SIN3PI-ll)
BXY =SIN3PHI=SINPHI
BXXY =COS3PHI+COSPHI
SNY =:SINPHI**2*BYX+COSPHl**2*BYY

-2.*SlNPHI*COSPH~I*BYXY
SNX =SINPH~I**2*BXX+COSP[41**2*BXY

-2.*SINPHI*COSPHI*BXXY
STY = SINPHI*COSPHI*(BYX-BYY)

+BYXY*(SINPHI**2-COSPHI**2)
STX = SINPHI*COSPHI*(BXX-BXY)
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+BXXY*(SINPHI**2.COSPHI**2)
C
C NOW THE RUSSIAN STUFF FOR A NON-STRAIGHT CRACK
C

BOTO0M = (1.+YSTAR(IT,ITAU)**2)**2
RNX = CAPY(ITITAU)*(YSTAR(IT,ITAU)**2-I1.-YI1(IT)*

YSTAR(I1JTAU)*(3.+YSTAR(1T,ITAU)**2))/BOTrOM-
YPSTAR(IT,ITAU)

RNY = (YPSTAR(IT,ITAU)-CAPY(IT,ITAU))*(YSTAR(ITITAU)* *2-1.)
* *(YSTpJR(ITffAU)YI(fl)/BOTfOM
RTX = (YPSTAR(IT,ITAU)-CAPY(IT,ITAU))*(YSTAR(IT,ITAU)

*(3.+YSTAR(IT,ITAU)**2)+Y 1(IT)*(YSTAR(IT,ITAU)**2- 1.))
/ BOTTOM

RTY = (YPSTAR(ITITAU)-CAPY(IT,ITAU))*(YSTAR(ITITAIJ)**2. 1.)
*(1 .+Y1(IT)*YSTAR(IT,ITAU)),BOT7OM+YPSTARQIT,ITAU)

C
C NOW BUILD THE MATRIX ALHS THAT IS TO BE SENT OFF TO THE
C GAUSS-JORDAN MARTIX INVERSION ROUTINE
C

IF (J.EQ.N2P2) THEN
ALHS(JN,IY) = VI(I)*COSPHI
ALHS(JN,IX) = -VI(I)*SINPHI
ALHS(JT,IY) =VI(I)*SINPHI
ALHS(JT,IX) = VI(I)*COSPHI

ELSE
ALHS(JN,IY) = SNY*WIK(J,I)/ABSFAC-VI(I)*(YSIGX*SINPHI**2+

YSIGY*COSPHI**2-2.*YSIGXY*SINPfHI*COSPHI)
-Vl(l)*RNY

ALHS(IJY) = STY*WIK(3 ,I)/ABSFAC-VI(l)-(SINPI*COSPHI*
(YSIGX-YSIG Y)+ YS IGXY* (SINPHI* *2-C05PHId* *2))
-VI(I)*RTY

ALHS(JN,IX) =SNX*WIK(J,I)/ABSFAC-VI(I)
*(XSIGX*SINPHI**2+XSIGY*COSPHI**2
-2.*XSIGXY*SINPHI*COSPHI)
-VI(I)*RN-X

ALHS(JT,IX) = STX*W]K(J,I)/ABSFAC-VI(I)
*(SINPMj*COPffl*(XSIGX-XSIGY)
+XSIGXY*(SINPHI**2-COSPHI**2))
-VI(l)*RTX

ENDIF
1 CONTINUE

C
C NOW SAVE THE LEFT HAND SIDE OF THE EQUATION, AND
C SAVE THE FORCING FUNCTIONS FROM THE RIGHT HAND SIDE
C

DO 110 I=lNB
RSSUl) = RHSQI)
DO 110 K=1,NB
ALSS(I,K) = ALHS(I,K)

110 CONTINUE



C
C NOW CALL THE MATRIX INVERSION ROUTINE - ALSS GETS
C REPLACED WITH ITS INVERSE, AND RSS GETS REPLACED
C WITH THE SOLUTION VECTOR
C

CALL GAUSSJ (ALSSNB,140,RSS,IER)
C
C IF ERROR - BOMB THE TURKEY
C

IF (IER.EQ.-1) GO TO 9999
C

RETURN
C
9999 WRITE (*,*) ' MATRIX IS SINGULAR - CHECK YOUR INPUT'

RETURN
END

C
SUBROUTINE KERNEL (Z0,Z,IZ0,IZ)

C
C
C THIS SUBROUTINE CONTAINS THE NON-CAUCHY SINGULAR
C PORTION OF THE GREEN'S FUNCTION THAT IS USED TO
C SOLVE THE PROBLEM
C
C

REAL*4 MKAP
COMPLEX RKHAT(70),SIHAT(70),Zl ,Z2,FAC1,FAC2
COMPLEX XSHEAR(70,70),YSHEAR(70,70)
COMMON /GEOM/ R,M,KAP,ALPHA,Z1,Z2,STRESS,PHIIN
COMMON /GEOM2/ ITIP,THETA,DZ,PHI(70)
COMMON /MATBLK/ ALHS(140,140),RHS(140),RSS(140),ALSS(140,140)
COMMON /BLOK3/ SI(70),RK(70),N2,H,H2,N2P2,FAC1,FAC2,ABSFAC
COMMON /BLOK4/ PSI(70),TAU(70)
COMMON /BLOK5/ VI(70),RKHAT,WIK(70,70),SIHAT
COMMON /BLOK6/ EJFJ,GJ
COMMON /KERNEL/ XNORM(70,70),YNORM(70,70),XSHEAR,YSHEAR
COMPLEX ZETAZETA0,ZETABZETAOB ,EYEA,CEMOZ0ZOBINVZZ0
COMPLEX ZOBOM,YEPO,XEPO,T1 ,TI A,T 1B,TIC,T1D,T1TIME
COMPLEX T2,T3,T4,T5,T6,T6A,T6B,T6C,T6D,T6TIME
COMPLEX T7,T7A,T7B,T7C,17D,T7TIME,PH11,PHI2,PHI3,PH14
COMPLEX TRY

C
C CALCULATE CONSTANTS TO BE USED IN THE CALCULATIONS
C STARTING BY TRANSFORMING Z AND ZO INTO ZETA AND ZETAO
C

TRY = CSQRT(Z**2-4.*R*R*M)
C
C MAKE SURE YOU PICK THE RIGHT ROOT
C

IF (REAL(Z).LE.O..AND.REAL(TRY).GT.0.) TRY = -1.*TRY
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ZETA = (Z+TRY)/(2.*R)
TRY = CSQRT(ZO**2-cmptx(4.*R*R*M,O.))
IF (REAL(ZO).LE.O..AND.REALCFRY).GT.O.) TRY = 1.*TRY
ZETAO = (ZO+TRY)I(2.*R)

C
C NOW THE REST OF THE CONSTANTS
C

ZETAB = CONJG(ZETA)
ZETAOB =CONJG(ZETAO)

ZOBINY I4iZETAOB
EMOZO =M/ZETA0

ZOBOM =ZETAOB/M

EYE = (O.,l.)
A = (ZOBINV-EMOZO)*(ZOBINV-ZETAO)/(ZOBLNV-ZOBOM)
C = (EMOZO-ZOBINV)*(EMOZO-ZOBOM)/(EMOZO-ZETAO)
YEPO = EMOZO-KAP/ZETAOB+M*M/ZETAO-M/(KAP*ZETAOB)-M*C+AIKAP
XEPO =EYE*EMOZO-EYE*KAP/ZETAOB.EYE*M*M/ZETAO+

EYE*M/(KAP*ZETAOB)+EYE*M*C+EYE*AIKAP
RYEPO = REAL(EYE*YEPO)
RXEPO = REAL(EYE*XEPO)

C
C CALCULATE THE TERMS IN THE KERNEL
C I REALIZE THAT THIS IS A MESS, BUT YOU SHOULD SEE THE
C PAGES OF ALGEBRA THAT MAKE THIS THING UP. MIKE SANTARE
C CAN HELP YOU WITH THIS IF YOU NEED IT
C

Ti A = (-2.*ZETA**3+ZETA**2/ZETAOB+M/ZETAOB)
/(KAPi*R*ZETAOB*(ZETA..ZOBIV)**2)

TIB = -(-2.*M*ZETA**3+M*M*ZETA**2/ZETAO+M**3/ZETAO)
/((ZETA-EMOZO)**2*R*ZETAO)

TIC = -2.*A*(-ZETA**4+M*ZETA/ZETAOB)
/(R*M*KAP*(ZETAZOBINV)**3)

TID = 2.*EYE*M*ZETA/(KAP*R*(1 .+M*MIKAP))
TITIME = (ZETA**2*(ZETAB**2+M))/(ZETAB*(zETIA**2-M)**3)

C
T2 = KAP*ZETA/(R*ZETAOB*(ZETA-ZOBINV)*(ZETA**2-M))
T3 = -M*ZETA/(R*ZETAO*(ZETA-EMOZO)*(ZETA**2-M))
T4 = M*C*ZETA**2/(R*CZETA-EMOZO)**2*(ZETA**2-M))
T5 = .EYE/(R*(ZETA**2-M)*(I.+M*M/KAP))

C
T6A = 1 /(KA*R*ZETAOB*(ETA7(BIN\r)*ZETA)
T6B = -M/(R*ZETAO*(ZETA-EMOZO)*ZETA)
T6C = -A/QR*M*KAP*(ZTAZOBINV)**2)
T61) = -EYE* M/(R*KAP*(1.+M*M/KAP)*ZETA**2)
T6TIME = -(M*ZETA**6-ZETA**4*(3.*M*M+1 .)-M*ZETA**2)

/((ZETA**2-M)**3)
C

T 7A = -(2.*ZETA-ZOBINV)/(KAP*ZETAOB *ZETA** 2* (ZETA.ZOBINV)* *2)
T7B = M*(2.*ZETA-EMOZO)/(ZETAO*ZETA**2*(ZETA-EMOZO)**2)
T 7C = 2.*A/(M*KAP*(ZETA-ZOB~iV)**3)
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T71) = 2.*EYE*M/(KAP*ZETA**3*(1.+M**2/KAP))
T7TIME = -ZTA**3*(I .+M*ZETA**2)/(R* (ZETA**2-M)**2)

C
PH~l= 2AP*
PIH2 = 73
PHI3 = -A*ZETA**2*M*KAP*(ZETAZOBNV)**2*(ZETA**2-M))
PH[14 = T5*M/KAP

C
C NOW TO CALCULATE THE NORMAL AND SHEAR COMPONENTS OF
C THE KERNELS. THE NORMAL COMPONENT IS THE REAL PART
C OF PHIPRIME. THE "SHEAR" COMPONENT IS THE OTHER
C PART OF MUSHKELISH-VILI'S POTENTIAL EQUATION
C

TI = (TlA+TlB+TIC+TD*RYEPO)*TTIME
T6 = (T6A+T6B+T6C+T6D*RYEPO)*T6TIME
T7 = MTA+T7B+T7C+T7D*RYEPO)*T7TIME
YSHEAR(IZO,IZ) =TI+T2+T3+T4+T5*RYEPO+T6+7

C
TI = (-EYE*Tl A-EYE*T1B+EYE*TIC+Tl D*RXEPO)*T1TIME
T6 = (-EYE*T6A-EYE*T6B+EYE*T6C+T6D*RXEPO)*T6TIME
T7 = (-EYE*T-7A-EYE*T-7B+EYE*T7C+T7D*RXEPO)*T7TIME
XSHEAR(IZO,IZ) =T1+EYE*.r2+EYE*T3-EYE*T4+TS*RXEPO+T6+r-7

C
YNORM(IZO,IZ) =2.*REAL(PHI+PHI2+PH13+PH14*RYEPO)

XNORM(IZO,IZ) 2.*REAL(-EYE*PHII-EYE*PHI2+EYE*PHI3+PH14*RXEPO)
C

RETURN
END

C
C

COMPLEX FUNCTION PFORCE(Z)
C
C
C SUBROUTINE THAT CALCULATES THE PHI POTENTIAL FOR THE FORCE
C DUE TO THE ELLIPSE, TO BE USED IN BUILD TO GENERATE THE
C RIGHT HAND SIDE OF THE EWUATION. SEE PAGE 349 IN
C MUSHKHELISHVILI'S BOOK
C
C

REAL*4 M,KAP
COMPLEX RKHAT(70),SIHAT(70),ZI Z2,FACI1,FAC2
COMPLEX XSHEAR(70,70),YSHEAR(70,70)
COMMON /GEOMI R,M,KAP,ALPHAZI Z2,STRESSPHIIN
COMMON /GEOM2/ ITIP,THETA,DZ,PHI(70)
COMMON /MATBLK/ ALHS( 140, 140),RHS( 140),RSS( 140),ALSS(140, 140)
COMMON IBLOK3/ SI(70),RK(70),N2,H,H2,N2P2,FAC I FAC2,ABSFAC
COMMON /BLOK4/ PSI(70),TAU(70)
COMMON /BLOK5/ VI(70),RKHAT,WIK(70,70),SIHAT
COMMON /BLOK6/ E-J,FJ,GJ
COMMON /KERNEL/ XNORM(70,70),YNORM(70,70),XSHEAR,YSHEAR

114



COMPLEX ZETA,2EYEZ,D)PHI
COMPLEX TRY

C
C GET ZETA
C

TRY = CSQRT(Z**2-cmplx(4.*R*R*M,O.))
IF (REAL(Z).LE.O..AND.REAL(TRY).GT.0.) TRY = -1.*TRY
ZETA = (Z+TRY)I(2.*R)
EYE = CMPLX(0.,1.)

C
C CALCULATE THE FORCE COMPONENTS FROM THE POTENTIALS
C

EPS =M*SIN(2.*ALPHA)*( 1.+KAP)/(4.*(M*M+KAP))
DPHI = ZETA**2/(4.*(ZETA**2-M))-(2.*M*EPS*EYE+M/4.-

.5*(COS(2.*ALpPA)+EYE* SIN(2.*ALPH4A)))I(KAP*(ZETA**2-M))
PFORCE = cmplx(2.*real(DPfH),O.)

C
RETURN
END

C
COMPLEX FUNCTION SFORCE(Z)

C
C ******************************

C CALCULATES THE SI POTENTIAL FROM PAGE 349 IN MUSHKHELISHVILI
C ******************************

C
REAL*4 MKAP
COMPLEX RKHAT(70),SIHAT(70),Z 1Z2,FAC 1 FAC2
COMPLEX XSHEAR(70,70),YSHEAR(70,70)
COMMON /GEOM/ RM,KAP,ALPHAZ1Z2,STRESSPHIIN
COMMON /GEOM2/ ITIP,THETA,DZPHI(70)
COMMON /MATBLK/ ALHS( 140,140),RHS( 140),RSS( 140),ALSS( 140,140)
COMMON IBLOK3/ SI(70),RK(70),N2,H,H2,N2P2,FAC 1 FAC2,ABSFAC
COMMON /BLOK4/ PSI(70),TAU(70)
COMMON /BLOK5/ VI(70),RKHAT,WIK(70,70),SIHAT
COMMON /BLOK6/ EJ,FJ,GJ
COMMON /KERNEL.1 XNORM(70,70),YNORM(70,70),XSHEAR,YSHEAR
COMPLEX ZETAEYEZBPHI,SIPRIM,PHITIM,T1 ,T2,T3,T4
COMPLEX T5,T6,T7,Z,ZETA.BZSM[M,A
COMPLEX TRY

C
C GET ZETA
C

TRY = CSQRT(Z**2-4.*R*R*M)
IF (REAL(Z).LE.0..AND.REAL(TRY).GT.0.) TRY - 1.*TRY
ZETA = (Z+TRY)I(2.*R)
EYE = CMPLX(O.,1.)
ZETAB = CONJG(ZETA)

C
C CALCULATE THE FORCE COMPONENTS FROM THE POTENTIALS
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C
EPS = M*S IN(2. *ALPHA)* (I.+ KAP)/(4. *(M* M+KAP))
SINALP =SIN(2.*ALPHA)

COSALP =COS(2.*ALPHA)

ZSMM = ZETA**2-M
PHITIM = ZETA**3*(ZETAB**2+M)/(ZETAB*ZSMM**2)
A = 2.*M*EPS*EYE.I.M4.-(COSALP+EYE*SINALP)t2.
ZBPHI = PIHTIM*(.5-ZETA**2/(2.*ZSMM)+2.*A/(KAP*ZSMM))
TI = ZETA**2*(COSALP-EYE*SINALP)/(2.*ZSMM)
T2 = -2.*EPS*EYEiZSMM
T3 = -KAP/(4.*ZSMM)
T4 = -ZETA**2*(1.+M**2)/(4.*ZSMM**2)
T5 = ZETA**4*(1 .+M**2)/(2.*ZSMM**3)
T6 = 2.*A*M*ZETA**2/(KAP*ZSMM**2)
T7 = -A*( 1.+M*ZETA**2)*(3.*ZETA**2-M)/(KAP*ZSMM**3)
SIPRIM = T1+T2+T3+T4+T5+T6+T7
SFORCE =ZBPHI+SIPRIM

C
RETURN
END

C
C

SUBROUTINE GAUSSJ (AN,NP,B,IER)
C
C
C GAUSS-JORDAN MATRIX INVERSION WITH FULL PIVOTING EXCERPTED
C FROM "NUMERICAL RECIPES IN FORTRAN"
C
C

DIMENSION A(NP,NP),B(NP),IPIV( 140),INDXR( 140),INDXC(140)
DO 11 J=lN

IPIV(J) = 0
11 CONTINUE

DO 22 I=l,N
BIG = 0.
DO 13 J = IN

IF (IPIV(J).NE.1) THEN
DO 12 K=I,N

IF (IPIV(K).EQ.O) THEN
IF (ABS(A(J,K)).GE.BIG) THEN

BIG = ABS(A(J,K))
[ROW=J
ICOL =K

ENDIF
ELSEIF (IPIV(K).GT.I) THEN

WRITE (*,*) 'SINGULAR MATRIX'
JER = -1
GO TO 999

ENDIF
12 CONTINUE
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ENDEF
13 CONTINUE

IPIV(ICOL) = IPIV(ICOL)+1
IF (IROW.NE.ICOL) THEN

DO 14 L=1,N
DUM = A(IROWL)
A(IROW,L) =A(ICOLL)

A(ICOL,L) =DIJM

14 CONTINUE
DUM = B(IROW)
B(IROW) =B(ICOL)

B(ICOL) =DUM

ENDIF
INDXR(l) = IROW
INDXC(I) = ICOL
IF (A(ICOL,ICOLQiEQ.O.) THEN

WRITE (*,*) 'SINGULAR MATRIX'
LER = -1
GO TO 999

ENDIF
PIVINV = 1./A(ICOL,ICOL)
A(ICOL,ICOL) = 1.
DO 16 L =1IN

A(ICOL,L) = A(ICOLL)*PIVINV
16 CONTINUE

B(ICOL) = B(ICOL)*PIVINV
DO 21 LL--1,N

IF (LL.NE.ICOL) THEN
DUM = A(LL,ICOL)
A(LL,ICOL) = 0.
DO 18 L=1.N

A(LL,L) = A(LL,L)-A(ICOLL)*DUM
18 CONTINUE

B(LL) =B(LL)-B(ICOL)*DUM
ENDIF

21 CONTINUE
22 CONTINUE

DO 24 L = N,1,-l
IF (INDXR(L).NE.INDXC(L)) THEN

DO 23 K=1,N
DUM = A(K,INDXR(L))
A(K,I7NDXR(L)) = A(K,INDXC(L))
A(K,INDXC(L)) = DUM

23 CONTINUE
ENDIF

24 CONTINUE
999 CONTINUE

RETURN
END

C
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SUBROUTINE RUSSIAN(N2P2)
C
C
C SUBROUTINE THAT CALCULATES THE POTENTIALS FOR A CURVED CRACK
C FROM A FIRST ORDER PERTURBATION SOLUTION. GIVEN IN A PAPER
C BY GOLDSTEIN AND SALAGANIK, IN RUSSIAN, IN THE IZVESTIA MTT,
C IN 1970. SEE MY THESIS TO GET THE FULL CITATION
C
C

COMMON /SPLIN/ X(70),Y(70),Yl(70),Y2(70)
COMMON /RUSS/ YSTAR(70,70),YPSTAR(70,70),CAPY(70,70)

C
DO 10 IT = 1,N2P2-1
DO 10 ITAU = 1,N2P2-I
IF (IT.EQ.ITAU) THEN

YSTAR(IT,ITAU) = YI(IT)
YPSTAR(IT,ITAU) = Y2(IT)
CAPY(IT,ITAU) = 0.

ELSE
YSTAR(IT,ITAU) = (Y(IT)-Y(ITAU))/(X(IT)-X(ITAU))
YPSTAR(IT,ITAU) = (YI(IT)-YI(ITAU))/(X(IT)-X(ITAU))
CAPY(IT,ITAU) = (YI(IT)-YSTAR(IT,ITAU))

/(X(IT)-X(rrAU))
ENDIF

10 CONTINUE
RETURN
END
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